

Printed Page: 1 of 2
Subject Code: KEE503
Roll No:

BTECH (SEM V) THEORY EXAMINATION 2023-24 ELECTRICAL MACHINES-II

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	$2 \times 10 = 20$
	11	

Q no.	Question	Marks	CO
a.	A 6-pole alternator rotates at 1000rpm. What is the frequency of the generated voltage?	2	1
b.	Name the various methods for predetermining the voltage regulation of 3-phase Alternator.	2	1
c.	What are the V-curves of a synchronous motor?	2	2
d.	Enlist the conditions for parallel operation of two single-phase alternators.	2	2
e.	Why the slots in the rotor of an induction motor are usually skewed?	2	3
f.	What is the condition for producing maximum torque in a 3-phase induction motor?	2	3
g.	Define cogging in an induction motor.	2	4
h.	Why the power factor of an induction motor is low at starting?	2	4
i.	List the different types of single-phase induction motors.	2	. 5
j.	Suggest modifications to be made in a dc series motor to operate it satisfactorily on alternating current?	2	5

SECTION B

2.	Attempt any three of the following:		$10 \times 3 =$	= 30

	11cccmpt any mice of the fone wing.		
a.	Why is rotating field system used in preference to a stationary field?	10	1
	Describe the difference in construction of rotors of alternators used in		
	hydroelectric plants and steam plants. Draw neat sketches of the two		
	types of rotor.		
b.	Explain working principle of synchronous motor. Discuss how	10	2
	synchronous motor is started using damper winding.		
c.	A 6-pole, 50 Hz, 3-phase induction motor has resistance and reactance of	10	3
	0.5Ω and 5Ω per phase respectively. Calculate (i) at what speed the		
	torque is maximum (ii) the ratio Maximum torque / starting torque.		
	Determine the external resistance per phase to be inserted so that starting		
	torque is half of the maximum torque.		
d.	Describe star-delta and autotransformer method of starting of 3-phase	10	4
	induction motor.		
e.	Explain the working and construction of (i) shaded pole motor and (ii)	10	5
	Permanent-split Capacitor motor.		

Printed Page: 2 of 2 **Subject Code: KEE503 Roll No:**

BTECH (SEM V) THEORY EXAMINATION 2023-24 **ELECTRICAL MACHINES-II**

TIME: 3 HRS **M.MARKS: 100**

	SECTION C		
3.	Attempt any one part of the following:	10x1 =	10
a.	A 3-phase, 16 pole, star-connected alternator is running at 375 rpm. The	10	1
	stator has 2 slots per pole per phase and 4 conductors per slot		
	accommodated in two layers. The coil span is 150 degrees-electrical.		
	Determine useful flux per pole if the machine gives phase voltage of		
	795.3 V on open circuit.		
b.	Derive emf equation for synchronous generator. Also, derive and	10	1
	incorporate pitch factor and distribution factor in the emf equation.		
4.	Attempt any one part of the following:	10x1 =	10
	Attempt any <i>one</i> part of the following: Two identical 2 MVA synchronous generators are operating in parallel.	$ \begin{array}{c c} \mathbf{10x1} = \\ \hline 10 \end{array} $	10 2
		1	
	Two identical 2 MVA synchronous generators are operating in parallel.	1	
	Two identical 2 MVA synchronous generators are operating in parallel. The governor of the first machine is such that the frequency drops from	1	
4. a.	Two identical 2 MVA synchronous generators are operating in parallel. The governor of the first machine is such that the frequency drops from 50 Hz on no-load to 48 Hz on full load and the corresponding uniform	1	
	Two identical 2 MVA synchronous generators are operating in parallel. The governor of the first machine is such that the frequency drops from 50 Hz on no-load to 48 Hz on full load and the corresponding uniform frequency drop of second machine from 50 Hz to 47.5 Hz (a) Determine	10	
	Two identical 2 MVA synchronous generators are operating in parallel. The governor of the first machine is such that the frequency drops from 50 Hz on no-load to 48 Hz on full load and the corresponding uniform frequency drop of second machine from 50 Hz to 47.5 Hz (a) Determine how will the machine share a load of 3000 kW? (b) Determine what is	10	
	Two identical 2 MVA synchronous generators are operating in parallel. The governor of the first machine is such that the frequency drops from 50 Hz on no-load to 48 Hz on full load and the corresponding uniform frequency drop of second machine from 50 Hz to 47.5 Hz (a) Determine how will the machine share a load of 3000 kW? (b) Determine what is the maximum load at unity power factor that can be delivered without	10	

5.	Attempt any one part of the following:	10x1 = 10
J.	recempt any one part of the following.	IVAI IV

a.	Derive and draw the torque-slip characteristics of a 3-phase induction 10	3
	motor indicating starting, maximum torque and the operating region.	
b.	A 4-pole, 440V 3-phase induction motor runs at 1450 rpm at 0.85 pf 10	3
	developing 11 kW power. The stator losses are 1100 W and mechanical	
	losses are 400 W. Determine (i) slip (ii) rotor copper loss (iii) rotor	
	frequency (iv) line current (v) efficiency.	

6. Attempt any *one* part of the following: 10x1 = 10

a.	Explain (i) Consequent pole method and (ii) V/f method for speed	10	4
	control of 3-phase induction motor.		
b.	Determine the maximum permissible full load kVA of the 3-phase induction mater if the symply sympet drawn from a 400 V 50 Hz 3	10	4
	induction motor if the supply current drawn from a 400 V, 50 Hz, 3-		
	phase supply is 120A. The starting current is 6 times full load current,		
	when (i) it is directly connected to the mains (ii) it is connected through		
	an autotransformer with a tapping of 60% and (iii) it is designed for use		
	with star delta starter.		

7. Attempt any one part of the following: 10x1 = 10

a.	Discuss	blocked	rotor t	est and	no-load	test	of single	e phase	induction	10	5
	motor.										
b.	Explain	the work	ing of	double o	cage mot	or inc	luction 1	notor. A	Also, draw	10	5
	and des	cribe its e	quivale	nt circui	t diagran	n.					