

TIME: 3 HRS

				Printed Page: 1 of Subject Code: KEE502				of 3		
				Sub	ject	Coc	de: I	KEE	2502	
Roll No:										

M.MARKS: 100

BTECH (SEM V) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

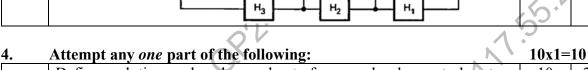
1.	Attempt all questions in brief.	2 x 10	=20
Q no.	Question	Marks	CO
a.	Explain the properties of signal flow graph.	2	1
b.	Define transfer function of a control system.	2	1
c.	Mention the effect of ξ on second order system performance for unit step input when (i) $\xi = 0$, (ii) $0 < \xi < 1$, (iii) $\xi = 1$, (iv) $1 < \xi < \infty$	2	2
d.	What are the standard test signals? Explain.	2	2
e.	On the basis of bounded input bounded output stability define stable system and unstable system.	2	3
f.	List the disadvantages of Routh-Hurwitz criterion.	2	3
g.	Describe the resonant peak and resonant frequency.	2	4
h.	Explain the minimum and non-minimum phase system.	2	4
i.	List the advantages of state variable approach for the analysis of a control system.	2	5
j.	Define state space and state trajectory.	2	5

SECTION B

	SECTION B		
2.	Attempt any three of the following:	10x3=	30
a.	Determine the transfer function for the block diagram given below by Mason's gain formula. R(s) G ₁ G ₂ G ₃ C(s)	10	1
b.	Explain the following terms in detail. a) PD controller b) PI controller	10	2
c.	The open loop T.F. of certain unity feedback system is $G(s) = \frac{K(s+1)}{s(s-1)(s+6)}$ Determine- i. Range of K for stability ii. Marginal value of K iii. Location of roots for marginal stability	10	3
d.	What is mapping theorem? Also explain the Nyquist stability criterion to determine the stability of a control system.	10	4

				Sub	ject	Coc	de: F	KEE	502
Roll No:									

Printed Page: 2 of 3


BTECH (SEM V) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

e.	Determine the transfer function from the state model given below-	10	5
	$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$		
	$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$		

SECTION C

3. Attempt any one part of the following: a. What do you understand by open loop and closed loop control systems? b. Discuss the comparative statements between open loop and closed loop control systems. b. Determine C(S)/R(S) for the following system using block reduction method. a. What do you understand by open loop and closed loop control systems? b. Determine C(S)/R(S) for the following system using block reduction method.

8	a.	Define peak time and peak overshoot of a second order control system	10	2
		and derive the formula for the same with unit step input.		
ł) .	The maximum overshoot for a unity feedback control system having its	10	2
		forward path transfer function as $G(s) = \frac{K}{s(sT+1)}$ is to be reduce from		
		75% to 25%. The system input is a unit step function. Determine the		
		factor by which K should be reduced to achieve the above reduction.		
		-0%	•	

5.	Attempt any one part of the following:	10x1=	10
a.	What do you mean by the root locus? State and explain all the steps used	10	3
	for drawing the root locus plot.		
b.	Sketch the root locus plot and comment on stability for the system when	10	3
	open loop transfer function is given by-		
	$G(s)H(S) = \frac{K}{}$		
	$s(s) = \frac{s(s+2)(s+4)(s+8)}{s(s+2)(s+4)(s+8)}$		

6.	Attempt any one part of the following:	10x1=	10
a.	Draw the Nyquist plot and determine the stability of the system whose	10	4
	open loop transfer function is given as.		
	$G(s)H(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$		

					Pri	inte	l Pa	ge: 3	of 3	,
				Sub	ject	Coc	nted Page: 3 of 3 Code: KEE502			
Roll No:										

BTECH (SEM V) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

b.	Draw the Bode plot for the open lo	oop T.F. $G(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$	10	4
	and from the graph determine-			
	(i). Gain cross-over frequency,	(ii). Phase cross-over frequency		
	(iii). Gain margin,	(iv).Phase margin,		
	(v). Comment on the stability of the	ne system		

7.	Attempt any one part of the following:	10x1=	10	
a.	What are the different types of compensators used in control systems? Also show that the frequency corresponding to the maximum lead angle (ω_m) is the geometric mean of the two corner frequencies of the lead compensator.	10	5	
b.	Examine the controllability and observability of a system with	10	5	
0.		10	3	
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 5 & 1 \end{bmatrix}$		N	3
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -3 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 5 & 1 \end{bmatrix}$	igo.	2	
	2A.01.201			