ed Pag	es: 02	Sub	Code	e:K0	CS0	77					
· Id:	Roll No.							$\overline{\top}$			
	B.TECH. (SEM VII) THEORY EXAMINATION DISTRIBUTED SYSTEMS		22-2	23							
: 3 Ho	urs	Total Marks: 100									
Atte	mpt all Sections. If you require any missing data,	then c	hoo	se s	uita	ably	7.				
	SECTION A										
Atte	empt all questions in brief.						2x.	10 =	20		
(a)	Explain the concept of consistent global state	and to	ransi	itles	s g	loba	al stat	e.			
(b)	Show the vector clocks are more suitable distributed system.				_				k fo	or a	
(c)	Differentiate between resource and communi	cation	dea	dlo	ck.						
(d)	List various performance metrics for distribut	ted mu	ıtual	exe	clus	sion	algo	rithr	n.		
(e)	Give some applications of agreement protoco	ols.									
(f)	Discuss the benefits of grouping files into vo										
(g)	Differentiate between consistent and strongly	consi	sten	t ch	eck	poi	nts.				
(h)	Discuss forward and backward recovery in di	istribu	ted s	syst	ems	S.					
(i)	List basic, multi version and conservative increasing order of transaction abort.	e time	estan	np	ord	lerii	ng al	gori	thm	ir	
(j)	Differentiate between flat and nested transact	ions.							. (٠. (
Atte	SECTION B empt any <i>three</i> of the following:					1	10:	x3 =	30		
(a)	Discuss the major issue in designing a distrib	uted s	yste	m.	N						
(b)	Classify the Deadlock detection algorithms. I detection algorithm.	Descri	be tl	he F	Path	-Pu	shing	; dea	adlo	ck	
(c)	Discuss the architecture of distributed file sys		L								
(d)	Explain dynamic voting protocol. Also comp		_	sta	tic v	voti	ng pr	otoc	ol.		
(e)	Discuss lock based concurrency control algor	ithms.	,								
	N.)									
	SECTION C										
Atte	mpt any <i>one</i> part of the following:						10x	1 = 1	10		
(a)	Discuss the limitations of distributed system. of these limitations.	List s	ome	pre	oble	em	arises	bec	aus	e	
(b)	Explain fundamental and architectural model	of dis	tribu	ıted	sys	sten	1.				
Atte	mpt any one part of the following:						10 :	x1 =	10		
(a)	Give the deadlock handling strategies in distr										
	among centralized, distributed and hierarchical deadlock detection strategies in										
(1.)	distributed system.	••	,1					<u> </u>		1	
(b)	Discuss the concept of Mutual Exclusion? De exclusion in distributed system. Is mutual ex										

Download from : uptukhabar.net

distributed system than single computer system? Justify your answer.

5. Attempt any *one* part of the following:

10x1 = 10

(a) Describe Byzantine agreement problem, and explain its solution. Show that
Byzantine agreement cannot always be reached among four processors if two
processors are faulty.
 (b) Give the design issues in distributed shared memory. State the algorithm for
implementation of distributed shared memory.

6. Attempt any *one* part of the following:

10x1 = 10

(a) List various issues in a fault tolerant system. Also differentiate between fault and failure.
 (b) Discuss the requirement of inserting checkpoints in message passing in distributed system. Show that when checkpoints are taken after every K messages sent, where K is greater than 1, the recovery system suffers from domino effect. Assume that a process take a checkpoint after sending the Kth message but doing nothing else.

7. Attempt any *one* part of the following:

10x1 = 10

ter	npt any	one part of the following:	10x1 = 10
)	Discu	ss Atomic commit in distributed transacti	on with suitable example.
)	Expla	in the followings	
	(i)	Transaction with replicated data	
	(ii)	Highly available services	
			7.55.72
		N N	
		6230	(2).
			13
		9	
			2
		Ox	1.2
		0	
		No	
		~^ <u>^</u>	
		\mathcal{L}	
		, ,0	

Downloaded from: uptukhabar.net