

Subject Code: KCS055
Roll No:

Printed Page: 1 of 2

 $2 \times 10 = 20$

2

5

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 MACHINE LEARNING TECHNIQUES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Qno.	Question	Marks	СО
a.	Explain the concept of machine learning.	2	1
b.	Compare ANN and Bayesian networks.	2	4
c.	What is the difference between linear and logistic regression?	2	2
d.	Discuss support vectors in SVM?	2	2
_	Discuss examitting and underfitting situation in decision two learning	2	2

Discuss overfitting and underfitting situation in decision tree learning. 2 2 f. What is the task of the E-step of the EM-algorithm? Define the learning classifiers. 2 2 g. What is the difference between machine learning and deep learning? 2 h. 1 What objective function do regression trees minimize? 2 2 i.

j. What is the difference between Q learning and deep Q learning? SECTION B

2. Attempt any *three* of the following:

Attempt all questions in brief.

	1	iy initee of the folio				
Qno.		•	Question		Marks	CO
a.		•	ataset and predic	et class of test example	10	3
	(A1=3, A2=	7).Assume K=3	-0V		(
	A1	A2	Class		(2)	
	7	7	True		S	
	7	4	True	K		
	3	4	False			
	1	4	True			
	5	3	False			
	6	3	True			
b.	Describe the	e Kohonen Self-Or	ganizing Maps an	d its algorithm.	10	4
c.	Explain the	various learning m	odels for reinforc	ement learning.	10	5
d.	Explain the	e role of genetic	algorithm? Disc	cuss the various phases	10	5
		in genetic algorithn)·		
e.	Describe BI	PN algorithm in AN	NN along with a si	uitable example.	10	4

SECTION C

3. Attempt any *one* part of the following:

J.	Attempt any one part of the following.		
Qno.	Question	Marks	CO
a.	Why SVM is an example of a large margin classifier? Discuss the different kernels functions used in SVM.	10	2
b.	Explain the relevance of CBR. How CADET tool employs CBR?	10	3

4. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Discuss the applications, properties, issues, and disadvantages of SVM.	10	2
b.	Explain the Confusion Matrix with respect to Machine Learning	10	1
	Algorithms.		

					111	IIII	ııa	gc. 2	01 4
				Sub	ject	Co	de: I	KCS	S055
Roll No:									

	Pla	yTennis: tra	ining exai	mples			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis		
D1	Sunny	Hot	High	Weak	No		
D2	Sunny	Hot	High	Strong	No		
D3	Overcast	Hot	High	Weak	Yes		
D4	Rain	Mild	High	Weak	Yes		
D5	Rain	Cool	Normal	Weak	Yes		
D6	Rain	Cool	Normal	Strong	No		
D7	Overcast	Cool	Normal	Strong	Yes	7.0	
D8	Sunny	Mild	High	Weak	No		
D9	Sunny	Cool	Normal	Weak	Yes		
D10	Rain	Mild	Normal	Weak	Yes		
D11	Sunny	Mild	Normal	Strong	Yes		
D12	Overcast	Mild	High	Strong	Yes		
D13	Overcast	Hot	Normal	Weak	Yes		
D14	Rain	Mild	High	Strong	No		

Attempt any *one* part of the following: 6.

Qno.	Question	Marks	СО
a.	What is instance based learning? How Locally Weighted Regression is different from Radial basis function networks?	10	3
b.	How is Bayes theorem used in machine learning? How naive Bayes algorithm is different from Bayes theorem?	10	2

/ •	Attempt a	ny one	e part	of the	e follo	wing:		$C^{V_{+}}$				
Qno.					Qu	estion		7.			Marks	СО
a.	Compare along with						luste	ring in mac	hine lea	arning	10	1
b. Given below is an input matrix named I, kernel matrix Convoluted matrix C using stride =1 also apply max pool Input Matrix I										te the	10	4
	0	0 0	0	1 1 0	1 1	0	1 1	Kernel Mat	rix			
	1	1	0	1	0	0	0	1	0	0		
	1	0	1	0	1	1	0	0	1	1		
				44								