

**Roll No:** 

## Subject Code: KAS402

# BTECH

(SEM IV) THEORY EXAMINATION 2021-22

#### **MATHS-IV**

## Time: 3 Hours

Total Marks: 100

## Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

| SECT  | ON-A Attempt All of the following Questions in brief Marks (10X2=20)                                                                                                                                     | CO |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Q1(a) | Solve the partial differential equation $p + q = 1$                                                                                                                                                      | 1  |
| Q1(b) | Calculate particular Integral (P.I.) of $(D - 3D' + 2)z = e^{x+2y}$                                                                                                                                      | 1  |
| Q1(c) | Tell the classification of the following partial differential equation<br>$5 \frac{\partial^2 u}{\partial x^2} - 9 \frac{\partial^2 u}{\partial x \partial t} + 4 \frac{\partial^2 u}{\partial t^2} = 0$ | 2  |
| Q1(d) | Write down the two-dimensional wave equation.                                                                                                                                                            | 2  |
| Q1(e) | Calculate the moment generating function of the negative exponential function $f(x) = \lambda e^{-\lambda x}; x, \lambda > 0$                                                                            | 3  |
|       | If Regression Coefficients are 0.8 and 0.8, what would be the value of coefficient of correlation?                                                                                                       | 30 |
| Q1(g) | A die is tossed twice, A success is getting 2 or 3 on a toss. Calculate mean                                                                                                                             | 4  |
| Q1(h) | Write Statement of Baye's theorem.                                                                                                                                                                       | 4  |
| Q1(i) | When we use F-test.                                                                                                                                                                                      | 5  |
| Q1(j) | Explain one-way ANOVA classification.                                                                                                                                                                    | 5  |

| SECT  | ION-B                      | Attempt A    | ANY TH                   | REE of the f                                       | ollowin      | ng Ques  | tions     | Marks (3X10=30)                                                                  | CO |
|-------|----------------------------|--------------|--------------------------|----------------------------------------------------|--------------|----------|-----------|----------------------------------------------------------------------------------|----|
| Q2(a) | Solve the                  | following    | partial di               | fferential equ                                     | ation b      | y Charp  | it Meth   | pd: px + qy = pq                                                                 | 1  |
|       | conditions                 | are $u(0,t)$ | =0, u(l                  | dimensional h<br>(t,t) = 0, (t > t)<br>e length of | 0) <i>an</i> | d the ir | 0i = 0.   | $\frac{u^2}{x^2}$ where the boundary <i>ondition</i>                             | 2  |
| Q2(c) |                            |              |                          |                                                    |              |          | of regres | sion of y on x and x on y.                                                       | 3  |
| Q2(d) | distributed<br>bulbs likel | with an av   | erage life<br>or: (i) Mo | e of 2040 hou                                      | rs and       | S.D of 6 | 60 hours  | cular make, was normally<br>. Calculate the number of<br>950 hours (iii) between | 4  |
| Q2(e) | Does the 1                 | mean of the  | se values                | •                                                  | cantly       |          |           | 8,47,49,53,51.<br>ed mean 47.5?                                                  | 5  |

| SECTION-C Attempt ANY ONE following Question Marks (1 | X10=10) CO |
|-------------------------------------------------------|------------|
|-------------------------------------------------------|------------|



Printed Page: 2 of 3

Subject Code: KAS402

CO

5

Roll No:

#### BTECH (SEM IV) THEORY EXAMINATION 2021-22 **MATHS-IV**

| Q3(a) | Solve the partial differential equation $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = xy$            | 1 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|---|
| Q3(b) | Use Cauchy's method of characteristics to solve the first order partial differential equation $u_x + u_y = 1 + cosy$ , $u(0, y) = siny$ | 1 |

| SECT  | ION-C      | Attempt ANY ONE following Question                                                                                   | Marks (1X10=10)     | CO |
|-------|------------|----------------------------------------------------------------------------------------------------------------------|---------------------|----|
| Q4(a) | Solve the  | following partial differential equation by method of separ                                                           | ation of variables: | 2  |
|       |            | $2u = 0. \ u(x,0) = 10e^{-x} - 6e^{-4x}.$                                                                            |                     |    |
| Q4(b) | Determine  | the solution of Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject | to the boundary     | 2  |
|       | conditions | u(0, y) = u(l, y) = u(x, 0) = 0 and $u(x, a) = f(x)$ .                                                               |                     |    |

| SECT  | ION-C      | Attempt ANY       | ONE fol      | lowing Qu    | estion  |                    |                       | Marks (1X10=10)     | CO |
|-------|------------|-------------------|--------------|--------------|---------|--------------------|-----------------------|---------------------|----|
| Q5(a) | Compute s  | kewness and Kı    | ırtosis,if t | he first for | ur mom  | ents of            | a frequ               | uency distribution  | 3  |
|       | about the  | value 4 of the v  | ariable ar   | e 1,4,10 a   | ind 45. | $\mathbf{O}$       |                       |                     | Ċ  |
| Q5(b) |            |                   |              |              | 0.5     | ,<br>с             | 1                     |                     | 3  |
|       | Use the me | ethod of least sq | uares to f   | it the curv  | e y = c | $x + -\frac{1}{2}$ | $\stackrel{1}{=}$ for | the following data: |    |
|       |            | -                 |              |              | //      |                    | x                     | Ň                   |    |
|       |            |                   | x 0.2        | 0.3          | 0.5     | 1                  | 2                     | 0.0                 |    |
|       |            |                   | y 16         | 14           | 11      | 6                  | 3                     | 6.1                 |    |
|       |            |                   |              |              | •       |                    |                       |                     |    |
|       |            |                   | <u> </u>     |              |         |                    |                       |                     |    |

| SECT  | ION-C        | Attemp     | ot ANY ONE follo      | wing Q    | uestion   |              |         |        | Marks (1X10=10)   | CO |
|-------|--------------|------------|-----------------------|-----------|-----------|--------------|---------|--------|-------------------|----|
| Q6(a) | Two urns     | contain 4  | 4 white ,6 blue and   | 4 whit    | e, 5 blue | e balls resp | pective | ly. Q  | ne of the urns is | 4  |
|       | selected at  | random     | and a ball is drawn   | ı from i  | t. If the | ball drawi   | n is wh | ite.   |                   |    |
|       | What is the  | e probab   | ility that it was dra | wn fror   | n the (i) | first urn (  | ii) sec | ond u  | rn.               |    |
| Q6(b) | The follw    | ing table  | gives the no.of da    | ys in a : | 50 day p  | eriod duri   | ng wh   | ich ai | utomobile         | 4  |
|       | accidents of | occured i  | n a city.             | -         |           |              | 7.      |        |                   |    |
|       |              |            | No. of accidents      | 0         | 1         | 2            | 3       | 4      |                   |    |
|       |              |            | No. of days           | 21        | 18        | 70           | 3       | 1      |                   |    |
|       | Fit a Poiss  | on distril | oution to the data a  | nd calc   | ulate the | e theoretic  | al freq | uenci  | es.               |    |

**SECTION-C** Attempt ANY ONE following Question Marks (1X10=10) The demand for a particular spare part in a factory was found to vary from day- to -day. In Q7(a) a sample study the following information was obtained Days Mon Tue Wed Thurs Fri Sat No. of parts 1124 1110 1120 1126 1125 1115 demanded Use  $\chi^2$ -test to test the hypothesis that the number of parts demanded does not depend on

the day of the week. [The value of  $\chi^2_{0.05} = 11.07 \ for \ 5 d.f$ ]



Subject Code: KAS402

Roll No:

#### BTECH (SEM IV) THEORY EXAMINATION 2021-22 **MATHS-IV**

| Sample no.          | 1  | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---------------------|----|----|---|---|---|---|---|---|---|----|
| No.of<br>defectives | 15 | 11 | 9 | 6 | 5 | 4 | 3 | 2 | 7 | 1  |

04.08.202 3:30:32 M. 55.242. 32 QP22EP2.290

Downloaded from : Uptukhabar.net