*Baisic used in Theory of Computation:
Quenything in mathernatics is based on symbols This is also true for antomata the -ation. The symbols aue generally letters adigits The central concept of autorsata thewhy include the "alphabet" (a set of symbol), "stering" (a list of Symbols 1 som and alphabet) and language" (a sut of strings from the some alphabet) - Alphabet: An alplabet is a finite, nonemply set of saymbols or characters. We use the symbol \sum for an alphabet. Cen \rightarrow of \sum is an alphabet contalining all the 26 characters used in English lang. Then Σ is finite if nonempty set and is uepresented as $\Sigma=\{a, b, c-2\}$; Another example is a binary alphabet $\Sigma=\{0,1\}$. $\mathbb{Z}=\{1,2,3-\}$ This is not alphabet 6 Cz this is ifinite.
$\Rightarrow B=\{ \}$ This is not alphabet bcz this is emply.

- Itring or word: A string is a finite sequence of symbols elioosen from some fined alphabet. Ex \rightarrow " $a b c$ " is a string over an alpliabet $\Sigma=\{a, b c-z\}$ Another enample is 01101 is a string from the binary appliabet $\Sigma=\{0,1\}$
The empty string or mule \&tring is denoted by C. The empty string is the string with zero occurrences of symbol: The length of a string is The no. If symbols or charadters in that sting If W is a stiving then its length is denated by $|w|$. Eg: (1) of $\omega=a b c d$, then length of w is

$$
|w|=4
$$

(2) If $\omega=123$, then length of ω is $|\omega|=3$.
(3) E in the empty string and has length 0 :

- Concatenation of strings:
(c If w_{1} and ω_{2} are twostwings then concatenation of w with w_{1} is a stewing. and it is denoted by $\omega_{1} \omega_{2}$ In etcher words, we soy that w_{1} is followed by w_{2} ? and length is $\left|w_{1} w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|$. for example-
0 of $\omega_{1}=a b c$ and $\omega_{2}=x y z \quad\left|w_{1}\right|=3$
then $w_{1} w_{2}=a b c \times y z$ $\left|w_{2}\right|=3$
g
Reverse of string
R os can be achieved by flipping over last symbols' If $w=a b c$
then $W^{R}=c b a, W^{R}$ is a reverse of w $|w|=\left|w^{R}\right|$.
. Language: A language ' b 'denotes a set of stiring'', as similar to infinity which is undefined f. a this is similar to an empty box. \& $\mathcal{\text { in is e, }}$ a lang. Without an string. for example:

1) $L_{1}=\{a b, a a b b, a a a b b b\}$ is a lang over alphabet $\varepsilon=\{a, b\}$
2) $L_{2}=\{\varepsilon, a, a a, a a a$, aaa -$\}$ is a lang over alphabet $\{=\{a, b\}$
3) $l_{3}=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 1\right\}$ is a lang.
4) $L_{4}=\left\{a^{n} b^{n} c^{m} \rho_{m, n} \geqslant 1\right\}$ is a lang.
5) Lang. of all string consists of ' n ' o 's followed by ' n ' 1's for some $n \geqslant 0$.

$$
L=\{\text { I's for some } n \geqslant 0.01,0011,000111 \cdots\} \text {. }
$$

6) The set of strings over O 's and I's with equal no. of each.

$$
l=\{\varepsilon, 01,1001,0101,011010, \ldots\} \text {. }
$$

Note: $\phi \neq\{\varepsilon\}$.
The former has no string \& later has one string.

If 促 sur n set．then
Con Catenation of language：
Concatenation of lang．can be defied as ：－If $L_{1} \&$ L_{2} are two lang thenthir concatenation is $C=l_{1} t_{2}$ when $\}=\left\{\omega \mid \omega \approx x y, x \in l_{1}, y \in l_{2}\right\} i \cdot e$ ，the string in $C_{1} L_{2}$ formed by choosing a．string L_{1} and followed by a string in L_{2} in all plessible combination．
－Kleene closure（or Reflexive Transitive closure）： let Σ be some alphabet then kleene closure of Σ is denoted by Σ^{*} also known as RT closure． The length of kleene closure of any alphabet is infinite．It is defined as follows－
$\Sigma^{*}:\left\{\right.$ set of all Words over $\left.\sum\right\}$ ？
$=$ \｛word of length zero，words of length one，words

$$
=\Sigma^{\circ} \cup \Sigma^{\prime} \cup \Sigma^{2} \cup \Sigma^{3}-
$$

for example－
1）If $\Sigma=\{0,1\}$ ，then $\Sigma^{*}=\varepsilon^{0} \cup \varepsilon^{\prime} \cup \Sigma^{2} \cup \varepsilon^{3}$ ．．

$$
\Sigma^{0}=\{\varepsilon\}
$$

$$
\Sigma^{\prime}=\{0,1\}
$$

$\Sigma^{2}=\{00,01,10,11\}$ and so m．

$$
\varepsilon^{x}=\{\varepsilon, 0 ; 1,00,01,10,11 \ldots\}
$$

2）If $s=\{a\}$ ．then

$$
S^{4}=\{\varepsilon, a, \text { aa, aaa, aha }, \cdots\} \text {. }
$$

Positive closure：if ε is an alphabet then positive． closure of Σ is denoted by $\Sigma^{+} \&$ defined as follows．

$$
\varepsilon^{+}=\Sigma^{*}-\{\varepsilon\} \text {. }
$$

$=\{$ set of all words over Σ excluding empty string $\& \zeta$ ．
for example -
$T_{(v)}=$ Mf $\varepsilon=\{a\}$ then $\varepsilon^{+}=\{a, a a$, aaa, aaa
$(2)=$ of $\Sigma=\{0,1\}$ then $\Sigma^{+}=\{0,1,00,11,01,10 \ldots$
Formal Languages:
To define the concept of a formal lang., we ned the idea of an alphabet and string we have seen the ketene closure \& positive closure. A formal lang. L on the alphabet Σ is a subset of Σ^{*}.e, $L C E^{*}$. Hem we ane defining a formal lang. i as a collection of stings (or Words).
${ }^{3}$ GRAMMAR:-
Grammar is nothing but set of rules used to define the lang. These ruled can be written within the hop of terminal or non-terminal $\begin{aligned} \text { Example - } s & \rightarrow 1 \mathrm{~S} \mid 0 \mathrm{~s} \\ s & \rightarrow 0 / 1\end{aligned}$
Here terminal symbols are 0 and 1 . The nonterminal symbol is S.

$$
\begin{aligned}
& s \rightarrow 1 s \\
& \rightarrow 10 s \\
& \rightarrow 101 s \\
& \rightarrow 1010 \\
& \rightarrow 1011 \\
& C=\{0,1,00,11,10,01,1010,1011 \cdots \cdots\}
\end{aligned}
$$

- What is Automata?

The term "Automat" is derived form the Greek Word "auTo RaTA" which means "self-acting". An automaton (Automata in plural) is an abstract is self propelled Computing device which is self propelled computing denise of operation it
follows a pur-defined sequence of
automatically.

An automat is finite no. of states is c / d finite Automata (FA) or finite statemp (FAM).

- Description of finite Autonuata:

A finite qutomata consist of a finite memory cha input take tape, a reade only bead and flite control. The I|P is provided on the tape and head reads one symbol on the tape and move forward. The movement is decided by the finite control when input is exhausted the fine te decides the Validity (for acceptibilit) of the ope input by acceptance or rejection (Ges/NO). It does not Write amy thing model wide is a Cinitation of this model. A mos Shown below. string processed

The input tape is divided into cells \& cad cell Contain one symbol from the input alphabet \sum. The symbol dollar is used at the left most cell $\&$ the symbol ψ is used at the right most cell. to Indicate tie beginning and end of the suput tape. The head reads one som bol on the input tape and finite control controls the next configuration (state). The head cannot

Write and Comnotibenove backlvord once the input symbol ishaswead. so backite Automat cannot uernember its buevious reads symbols This is, one of the major equitation of A A, which shows that if carrot be used in. such computation where knowledge of previous input is necessary. FA is also known as FSM Do FSA
Types of F.Automata.
Their arr two types of FA.

1) Deterministic FA
2) Non-Deterministic FA.

Qu) Draw the Transition diagram for Transition Table shown belovo.
non:
bon!

$$
\begin{aligned}
& A D F A, M=\left(Q, E, \delta, q_{0}, F\right) \\
& Q=\left\{q_{0}, q_{1}, q_{2}\right\} \quad F=\left\{q_{2}\right\} \\
& \sum=\left\{a_{1} b\right\} \\
& q_{0}=\left\{q_{0}\right\} \\
& \delta\left(q_{0}, a\right)=q_{1} \\
& \delta\left(q_{0}, b\right)=q_{2} \\
& \delta\left(q_{1}, a\right)=q_{2} \\
& \delta\left(q_{1}, b\right)=q_{0} \\
& \delta\left(q_{2}, a\right)=q_{2}
\end{aligned}
$$

$$
n \quad f\left(q_{1}, a\right)=q_{2}
$$

$$
1 \quad f\left(q_{1}, b\right)=q_{0}
$$

$$
\stackrel{f}{i} \quad f\left(q_{2}, a\right)=q_{2}
$$

$$
a \quad f\left(q_{2}, b\right)=q_{2}
$$

Acceptibility of a string by DFA: $\omega \in \Sigma^{*}$. The string w is accepted by $D F A$. In case w is accepted by M, the execution of String ω ends in a fiutabx state. Consider the SFA shown in figure and input strings are(1)ab(2)abb check the acceptibility of each string.

(1) Solution: let string $w_{1}=a b$, then the transition sequence is as follows:

$$
\rightarrow q_{0} \xrightarrow{a} q_{1} \xrightarrow{b}
$$

Execution ends in final state q_{f}, hence string " $a b$ " is accepted.
(2) Solution: (et string $\omega_{2}=a b b$, then the transition sequence is as follows:

Execution ends not in final stage af, hence string " $a b b$ " is not accepted.
Consider the Dfivite Automat, $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}\right.$, $\left.\{0,1\}, \delta, q_{0}, q_{0}\right\}$ and the transition table is -

δ / Σ	0	1
t	$\rightarrow\left(q_{0}\right)$	q_{2}
q_{1}^{\prime}	q_{3}	q_{0}
q_{2}	q_{0}	q_{3}
q_{3}	q_{1}	q_{2}

1) find the acceptability of the following
String
(a) 110101
(b) 101100
\therefore (a) Let $\omega_{1}=110101$

$$
\begin{gathered}
\delta\left(q_{0}, w_{1}\right) \Rightarrow \delta\left(q_{0}, 110101\right) \Rightarrow \delta\left(q_{1}, 10101\right) \Rightarrow \delta\left(q_{0}, 001\right) \\
\Rightarrow \delta\left(q_{2}, 101\right) \Rightarrow \delta\left(q_{3}, 01\right) \Rightarrow \delta\left(q_{1}, 1\right) \Rightarrow q_{0}
\end{gathered}
$$

I It means that the string 110101 accepted.
(6) Let $\omega_{2}=101100$

$$
\begin{gathered}
\delta\left(q_{0}, w_{2}\right) \Rightarrow \delta\left(q_{0}, 101100\right) \Rightarrow \delta\left(q_{1}, 01100\right) \Rightarrow \delta\left(q_{3}, 1100\right) \\
\Rightarrow \delta\left(q_{2}, 100\right) \Rightarrow \delta\left(q_{3}, 00\right) \Rightarrow \delta\left(q_{1}, 0\right) \Rightarrow q_{3}
\end{gathered}
$$

This is nat accepted 101100 string.
Z The langevage of OFA:
Ques Design a finite Automate that accept Design a finite that every string end
set of string such that $\Sigma=(0,1)$
in of over alphabet
$=$ Sol? let $D F A, M=\left(\theta, \Sigma, \delta, q_{0}, F\right)$

$$
q_{0}=\left\{q_{0}\right\} \text { (initial state) }
$$

$\Sigma=\{0,1\}$ is given.

$$
\begin{aligned}
& L=\{00,100,0100,0110100,110100,-\}\} \\
& Q=\left\{q_{0,} q_{1}, q_{2}\right\} . \\
& F=\left\{q_{n}\right\}
\end{aligned}
$$

Qu s Draw a finite Automate that accepts set
of string where the no. of reno in every string is multiple of 3 over alphabet $\Sigma=\{0,1\}$

δ / Σ	0	1
$\rightarrow q_{0}$	q_{1}	q_{0}
q_{1}	q_{2}	q_{1}
$* q_{2}$	q_{0}	q_{2}

$$
\begin{aligned}
& q_{0}=\left\{q_{0}\right\} \\
& q=\left\{q_{0}, q_{1}, q_{2}\right\} . \\
& F=\left\{q_{0}\right\} .
\end{aligned}
$$

Ques Design a F.A that accepts string containing exactly one over alphabet $\Sigma=\{0,1\}$.

$$
\text { exactly one over alphaver } l=\{01,001,1,100,0100, \ldots\}
$$

Ques Design a f.A which accept strings: containing exactly 4 ones in every string over alphabet $\mathcal{E}=\{0,1\}$.
$3 \quad l=\{1111,11011,001111,10101010, \ldots$ \}

Ques Design a FA which accept the largtate
$10 \quad\left\{\omega \in(0,1)^{*} \mid\right.$ second symbol of ω is 0 and fourth syonbo 4 is 1$\}$.

a Ques Draw a FA for the lang $L=\left\{a^{2 n} \mid n \geqslant 1\right\}$.
($\cap) L z\{a a$, aaa, raaaraaa --$\}$
Ques Draw a FA for a the lang $l=\left\{a^{2 n} \mid a \geq 0\right\}$

Ques Construct a DFA for the following over alphabet $\Sigma=\{0,1\}$.
(1) Cen no. of 1 's and leven no. of 0 's sol $)^{n} L=\left\{\begin{array}{c}0101,1010 \cdots\} \\ 0\end{array}\right.$

Accepted.
(2) leven no. of 1 's and @dd no. of O 's.

(3) Oadno. of 1 's and Even no. of O^{\prime} 's sol $\quad L=\{00111,0101100 \cdots\}$

(4) Odd no. of 1 's and odd no. of O's.

Ques Describe in english the lang. accepted by the following DFA. $l=\{a, a a a$, bag, tana $\}$
sol

The lang. consisting of all the strings that auer of odd length arid ending withe a over alphabet $\Sigma=\{a, b\}$
Ques Describe in english lang. accepted by the following DFA.
Sol

$$
\rightarrow q_{0} \xrightarrow{a, b} a_{2} \stackrel{a, b}{a}
$$

$$
L=\{a a, b a, a b a a, b b a a,--\}
$$

The language consisting of ale the strings that are of leven length ard ending with a over alphabet $\Sigma=\{a, b\}$.

Ques Construct a QFA for the following lang.

QurGiven a DPA, m suggest a puoceduen to draw DFA which accept complement of the tang acceptible by. Procedure: (1) change the final s tate to nonfinal state.
(2) change the non-final state to final
state.
(i) $\rightarrow\left(2_{0}\right)^{\prime} 0 \rightarrow(21) \xrightarrow{0} \mathrm{Q}_{2} \rightarrow$

(ii) $\rightarrow\left(20{ }^{2 a} \xrightarrow{2 a} M\right.$

Non- DAurinistic Finite Automate:
The concept of NFA is exactly reverse of AFA The finite Automata is called NFA when \forall many pate for a specific Euput from current state to next state.

Definition of NFA:-
A NFA M_{1} is described by 5 tuples ($\theta, \varepsilon, \delta, q_{0}, f$) where Q is finite and nonempty of s tate. It contains ale the states, \sum is finite and non empty set of input alphabets, δ is transition fun which maps $\theta \times \Sigma \rightarrow 2^{\theta}$ qu belongs to Q is the initial state or starting state. and F is subset of $Q(F \subseteq Q)$
is a set of final state. is a set of Final state.

- Acceptibility of a string by NFA:

$$
\delta\left(q_{0}, w\right)=q_{f}
$$

$\frac{\text { for example: }}{\text { following string - }}$ following string -
(a) $a b b$
(b) $a b a$
(c) $a b b a b b$

1) (et $\omega_{1}=a b b$, then the transmission sequence for the input string ceabbs, is a follows:

$$
\begin{equation*}
\rightarrow \text { (20) }{ }^{a} \longrightarrow \text { (20 }_{\rightarrow}^{\text {(qu }} \xrightarrow{b} \text { (20 } \xrightarrow{b} \tag{20}
\end{equation*}
$$

(2)

- Deterministic finite Automata (DFA):

The finite automata is called deterministic. finite automata if then is only one path For a specific input from current state to next state.
Example: The DPA can being shawn as below:
(20) $a \rightarrow$ (21) a
(92) fig: Deterministic finite Automate

- Definition of DFA:

A DA M is described by five tuples $\left(Q, \Sigma, \delta, q_{0}, f\right)$ θ is finite, non-empty set of states. It Contains all transition fun c which map $\theta \times \Sigma=\theta$. Yo belongs to $\theta, q \in \theta$ is the initial or starting s tate. F known as set of final state $(F \subseteq \theta)$. Simplifies Notations used in finite automata.

- State Transition Graph:

We represent a finite automata by describing all five tuples ($\left.\theta, \varepsilon, \delta, q_{0,} f\right)$. Transition graph (system), is used for representing finite automata. We used following notations for up presenting the flite automata.

* The starting state is represented by a state with in a ciucle and an arrow entering into circle.
\rightarrow (20) (started state named 90)
* Final state is represented by a state with in double circe.
(2f) (final state named q_{f})
* The Rang or trap state is represented by the symbol "(\$) within a circle. (\$))
* Other states ane represented by the state name within a circle.
(q)
* A directed edge or arch with label shows the transition (or move)
Suppose p is the present state and q is next State on input symbol ' a^{\prime} then this is represented by

$$
(p) a \text { (q) or }[\delta(p, a)=q]
$$

\# Transition Function:
We have, two types of transition fun based on the input. If length of the input is zero or one then direct transition otherwise indirect transition.

Transition function

Direct transition fun.
(represented by 8)

Indirect transition fun c (represented by 8^{\prime} or 8) 6

Direct Transition function:
When the input is single symbol a transition fun ${ }^{c}$ is known as direct transition function. It is also known as one step transition $(\delta(p, a)=q)$

- Indisuct Transition function:

When the input is a string, transition fun c is known as indirect transition function $I t$ is also known as one step or more than onestup or transition function. $\delta(p, w)=q$, when p is the present state $\& q$ is the next s tate after (N) transitions.
Example: $N=a a b$

$$
\begin{aligned}
\delta\left(q_{0}, a b\right) & =\delta\left(\delta\left(q_{0}, a\right), a b\right) \\
& =\delta\left(q_{1}, a b\right) \\
& =\delta\left(8\left(q_{0}, a\right), b\right) \\
& =\delta\left(q_{2}, b\right) \\
& =q_{3} .
\end{aligned}
$$

- Transition Table:

A transition table is a tabular representation of a transition function that takes two arguments and returns a state. The hows of the table corresponds to the states and the columns corresponds to the inputs. The entry for one low corresponding to state 2 and the column corresponding to input ${ }^{\text {e }} a^{\text {g }}$ is the state $\delta(q, a)$
Example: A DFAYM $=\left(\left\{q_{0}, q_{1}, q_{2}, q+\right\},\{a, b\}, d, q 0,\{q f q)\right.$ is shown in figure. The graph shewn in fig is k now

δ / Σ	a	b
$\rightarrow q_{0}$	q_{1}	q_{2}
q_{1}	q_{0}	q_{7}
q_{2}	q_{f}	q_{0}
$* q_{8}$	q_{2}	q_{1}

ted bu a $\because 1 \rightarrow$ (1)
Language of NFA:
Ques Design a NFA for the lang. L over alphabet $\Sigma=\{0,1\}$ such that every stewing in the L must contain the sub-string 0101 .
90°

(23) 1 (24) ${ }_{00,1}$

$$
\begin{aligned}
& \text { let NFA } M_{1}=\left(q, \Sigma, \delta, f, q_{0}\right) \\
& \theta=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& q_{0}=\left\{q_{0}\right\} \text { initial state } \\
& F=\left\{q_{4}\right\} \text { Final state } \\
& \Sigma=\{0,1\} \\
& \begin{array}{|c|c|c|}
\hline \delta / \varepsilon & 0 & 1 \\
\hline \rightarrow q_{0} & \left\{q_{0}, q_{1}\right\} & \left\{q_{0}\right\} \\
q_{1} & - & \left\{q_{23}\right. \\
q_{2} & q_{3} & - \\
q_{3} & - & q_{4} \\
\hline * q_{4} & q_{4} & q_{4} \\
\hline
\end{array}
\end{aligned}
$$

Ques Construct a NFA in which double one is followed by double zero aver alphabet.

Ques Design a NPA to accept strings with a's and b's such that string end with

Ques construct NFA for the lang.

$$
l=\left\{0101^{n} \cup 0100 / n \geqslant 0\right\} .
$$

$$
\text { fồ } L=\{010,0101,01011,01011140100\}
$$

(95)
\# Difference b/w DFA and NFA

- Construction of lequivalent DFA 'AA' foom given NPA M1.
Ques consider a NFA shown in fig.
$\rightarrow S \xrightarrow{2 a, b}$ (21 b (qt
Solution: let given NFA, $M=(Q, \Sigma, \delta, S, F)$
and its equivalent $D F A, M_{1}=\left(\theta_{1}, \Sigma, \delta_{1},[s], f_{1}\right)$.

$$
\begin{aligned}
& Q=\left\{s, q_{1}, q_{2}, q_{t}\right\} \\
& \varepsilon=\{a, b\}
\end{aligned}
$$

$$
\begin{aligned}
& s=\{s\} \text {, starting state } \\
& F=\left\{q_{f}\right\} \text { final \& tate }
\end{aligned}
$$

$F=\left\{q_{f}\right\}$, final state
δ is defined as follows:

δ / c	a	b
$\rightarrow s$	$\left\{s, q_{1}\right\}$	$\{s\}$
q_{1}	-	$\left\{q_{2}\right\}$
q_{2}	-	$\left\{q_{f}\right\}$
$* q_{f}$	-	-

S_{1} is defined as follows:

$$
\begin{align*}
& \text { * } \delta_{1}[[s, q,], a]= \\
& {[\delta(s, a) \cup \delta(a, a)]} \\
& =[E S, q, 7 \cup \phi] \\
& =\left[\rho, q_{1}\right] \\
& \text { * } \delta_{1}\left[\left[s, q_{1}\right], b\right]= \\
& {\left[\delta[\rho, b] \cup \delta\left[q_{1}, b\right]\right.} \\
& =\left[\{s\} \cup\left\{q_{2}\right\}\right] \\
& =\left[s, q_{2}\right] \tag{b}\\
& s=\{[s]\}_{\substack{\text { starting } \\
\text { state }}}^{\sim} F_{1}=\{[s, q f]\} \\
& \sum=\{a, b\} \text { station } Q_{1}=\left\{[s],\left[s, q_{1}\right][s, q 2],\left[s, q_{f}\right]\right.
\end{align*}
$$

Whifind a DFA equilacent to NFA $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, 5\}\right.$, s $\delta, q_{0},\left\{q_{2}\right\}$) where δ. is defined as follows -

puesent state $(p s)$	a	b
$\rightarrow q_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{2}\right\}$
q_{1}	$\left\{q_{0}\right\}$	$\left\{q_{1}\right\}$
$* q_{2}$		$\left\{q_{0}, q_{1}\right\}$

Solution:-
Let $M_{1}=\left(\theta_{1}, \Sigma, \delta_{1},\left[q_{0}\right], F_{1}\right)$ be the equivalent DFA, wheue $\Sigma=\{a, b\}, q_{0}=\left[q_{0}\right]$ starting state ${ }^{a}$ δ_{1} is defined as follows: -

Prusent	a	b
$\rightarrow\left[q_{0}\right]$	$\left[q_{0}, q_{1}\right]$	$\left[q_{2}\right]$
$\left[q_{0}, q_{1}\right]$	$\left[q_{0}, q_{1}\right]$	$\left[q_{1}, q_{2}\right]$
$\forall\left[q_{2}\right]$	-	$\left[q_{0}, q_{1}\right]$
$*\left[q_{1}, q_{2}\right]$	$\left[q_{0}\right]$	$\left[q_{0}, q_{1}\right]$

$$
\begin{aligned}
& D_{1}=\left\{\left[q_{0}\right],\left[q_{0}, q_{1}\right],\left[q_{2}\right],\left[q_{1}, q_{2}\right]\right\} \\
& F_{1}=\left\{\left[q_{2}\right],\left[q_{1}, q_{2}\right]\right\} .
\end{aligned}
$$

- Difference 0/w l^{*} and l^{+}:
let $\Sigma=\{a\}$.
l^{*} is a kleene closure over alphabet $\Sigma=\{a\}$

$$
L^{*}=\{\varepsilon, a, a a, \text { aaa, aga, } \cdots\}
$$

l^{+}is a positive closure over alphabet $\Sigma=\{a\}$.

$$
L^{+}=\{a, a a, a a a, a a a a, \cdots\}
$$

Ques show that the Automata M_{1} and M_{2} is given in figure are equivalent or not. Given the difference and similarity b/w the following $F A$.

- Difference b/w M_{1} and M_{2} :

M_{1}

(1) Have three states
(2) (M2) will have the set of string in which theme is no such restriction.
(1) Have tho states
(2) $L\left(M_{1}\right)$ will have the string in which theme is no one is allow after 0 is encounter
- Similarity 6/w M_{1} and $M_{2}:$

In, both finite Automatas empty string is accepter
V隹imization of OFA:
Algorithm:
(1) Eliminate the dead state and un reachable states from the given DFA (if any)
(2) Draw the transition table for rest states after removing the dead state and unreachable states.
(3) Split the transition table in two tables T_{1}
and T_{2} gwheme
$T_{1}=\{$ contains all roes which starts with states f om $\theta-7) \mid=$
$T_{2}=\left\{\begin{array}{c}\text { contains all rows which starts with states } \\ \text { from } F\end{array}\right.$
from $F X$
(4) find tho similar rows from T_{1} such that:

$$
\begin{aligned}
& f(q, a)=p \\
& f(q, a)=p
\end{aligned}
$$

(5) Repeat step (V) +ill there is no similar
(6) Repeat the stop (4) and sups ane auailable in T_{1}.
(7) Now combined the reduced T_{1} and T_{2}. The combined transition table is transition table of minimized DPA.
Ques Minimize gre given AFA

(25) P0,1

ふ
, b (1) Remove the un eveachable state q_{2} and q_{4} from
the given sf. the given NFA.
E

(2) Draw the transition for rest of the states

δ / Σ	0	1
$\rightarrow q_{0}$	q_{1}	q_{3}
q_{1}	q_{0}	q_{3}
$* q_{3}$	q_{5}	q_{5}
$* q_{5}$	q_{5}	q_{5}

: (3) Split the transition table into two.

$$
T_{1}=\begin{array}{|c|c|c|}
\begin{array}{|c|c|c|c|}
\hline \delta / \varepsilon & 0 & 1 \\
\hline \rightarrow q_{0} & q_{1} & q_{3} \\
q_{1} & q_{0} & q_{3} \\
\hline
\end{array} \\
\quad T_{2}=\begin{array}{|c|c|c|c|}
\hline 8 / \varepsilon & 0 & 1 \\
\hline * q_{3} & q_{5} & q_{5} \\
* q_{5} & q_{5} & q_{5} \\
\hline
\end{array} \quad \text { for similar rows. }
\end{array} \quad \quad T_{1}
$$

(4)

$$
T_{1}=\begin{array}{|c|c|c|}
\hline \delta / \Sigma & 0 & 1 \\
\hline \rightarrow q_{0} & q_{2} & q_{3} \\
q_{1} & q_{0} & q_{3} \\
\hline
\end{array} \quad \begin{aligned}
& \text { consider table } T_{2} \text { for finding similar rout. } \\
& \hline
\end{aligned}
$$

(5) Now consider the table T_{2} for finding similar rower.

$T_{2}=|$| | 0 | 1 |
| :---: | :---: | :---: |
| $* q_{3}$ | $q_{5} q_{3}$ | $q_{5} q_{3}$ |
| $* q_{5}$ | q_{5} | q_{5} |

$$
T_{2}=\begin{array}{|c|c|c|}
\hline \delta / \varepsilon & 0 & 1 \\
\hline * q_{3} & q_{3} & q_{3} \\
\hline
\end{array}
$$

(6) Now combine the reduced table T_{1} and T_{2} the Combine transition table is the transition table of minimized DPA.

d / ε	0	1
$\rightarrow q_{0}$	q_{1}	q_{3}
q_{1}	q_{0}	q_{3}
$* q_{3}$	q_{3}	q_{3}
0		

Rigi Transition Diagram

The ε-cosurie (p) is a set of all states which are wachable from state p on \cdot-transitions such that
(i) ε-closure $(p)=p$, when e $p \in Q$
(ii) of theme exist \& closure $(p)=\{q\} \&(q, \varepsilon)=r$ then $\varepsilon \operatorname{cosume}(p)=\{q, r\}$.
Ques find ε-closure for the following $O F A$
Solution:

$$
\rightarrow q_{0} e^{a} \varepsilon \rightarrow q_{1}{ }^{b} \varepsilon^{\text {beth }} e_{c}
$$

Enclosure $\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$ self statutE reachable
ε-closure $\left(q_{1}\right)=\left\{q_{1}, q_{2}\right\}$
ε-closure $\left(q_{2}\right)=\left\{q_{2}\right\}$ states

Ques

$$
\begin{aligned}
& \varepsilon \text { closure }\left(a_{0}\right)=\left\{q_{0}, q_{1}, q_{1}\right. \\
& \varepsilon \text { closure }\left(q_{1}\right)=\left\{q_{1}, q_{2}\right. \\
& \varepsilon \text { closure }\left(q_{2}\right)=\left\{q_{2}\right\} .
\end{aligned}
$$

Eliminating ε-transition:

- Conversion from NFA with e to NFA without E!:
In this method we trey to remove all the E transitions from given NPA. The method will be -
(1) Find out all the ε transitions from each state from Q, that will be called as ε closure $\left\{q_{i}\right\}$, where $q_{i} \in Q$.
(2) Then f'transition can be obtained. The ' δ ' Transitions means an ε closure on δ moves
(3) Step 2 is repeated for each input symbol and for each state of given NPA.
(C) Using the resultant state the transition Table for equivalent NFA without \& Can be
buxilt.
Ques convert the given NFA with 8 to NFA
without ε.

$$
\leftrightarrow(20 \xrightarrow{\text { without } \varepsilon \text {. }} \underset{\rightarrow}{\varepsilon} \xrightarrow{\varepsilon}
$$

sol ε-cosuue $\left(q_{0}\right)=\left\{q_{0}\right\}$
$\varepsilon-$ cosume $\left(q_{1}\right)=\left\{q_{1}, q_{2}\right\}$
$\varepsilon-\cos \operatorname{cose}\left(q_{2}\right)=\left\{q_{2}\right\}$.
Now the f^{\prime} transitions on each symbol is

$$
\begin{aligned}
& \text { oltained } \\
& \delta^{\prime}\left(q_{0}, a\right)=\varepsilon-\operatorname{cosure}\left(\delta\left(\varepsilon-\operatorname{cosume}\left(q_{0}\right), a\right)\right) \\
&=\varepsilon-\operatorname{cosure}\left(\delta\left(q_{0}, a\right)\right) \\
&=\varepsilon-\operatorname{cosure}\left(q_{1}\right) \\
&=\left\{q_{1} q_{2}\right\} \\
& \delta^{\prime}\left(q_{0}, b\right)=\varepsilon-\operatorname{cosume}\left(\delta\left(\varepsilon-\operatorname{cosune}\left(q_{0}\right), b\right)\right) \\
&=\varepsilon-\operatorname{cosume}\left(\delta\left(q_{0}, b\right)\right)
\end{aligned}
$$

$$
=\varepsilon-\cos \mu u(\phi)
$$

$$
\begin{aligned}
& \text { e } \phi \text {. } \\
& \delta^{\prime}\left(q_{1}, a\right)=\varepsilon-\operatorname{cosu\mu }\left(\delta\left(\varepsilon-\cos \mu \cos \left(q_{1}\right), a\right)\right) \\
& \tau \varepsilon \text {-closume }\left(\delta\left(q_{1}^{u}\left(a_{2}\right) a\right)\right. \\
& \text { - } \mathcal{E} \text {-clasure (} \phi \text {) } \\
& =\phi \\
& \delta^{\prime}\left(q_{1}, b\right)=\varepsilon-\operatorname{cosume}\left(\delta\left(\varepsilon-\operatorname{cosume}\left(q_{1}\right), b\right)\right) \\
& \tau \varepsilon \text {-closume }\left(\delta\left(q_{1}, q_{2}\right), b\right) \\
& =\varepsilon \text {-closurue }\left(\delta\left(a_{1}, b\right) \cup \delta\left(q_{2}, b\right)\right. \\
& \varepsilon \varepsilon-\operatorname{cosurue}\left(\phi \cup q_{2}\right) \\
& =\varepsilon \text {-closure }\left(q_{2}\right) \\
& =\left\{q_{2}\right\} \text {. }
\end{aligned}
$$

(2) $a \rightarrow$ (22)

Ques Convent the
cultront E.

$$
\rightarrow Q_{0} \overbrace{}^{0} \varepsilon a_{1} e^{\prime} \varepsilon a_{2} 2^{\prime}
$$

- Conversion of NFA withe to AFA:
; (1) Consider $M=\left(Q, \varepsilon, \delta, q_{0}, F\right)$ is a NFA wither ε. We have to convent this NFA with ε to equivalent OFA denoted by:
$M_{D}=\left(Q_{D}, \Sigma, \delta_{D}, q_{0}, F_{D}\right)$ then obtain
E-closuru $\left(q_{0}\right)=\left\{p_{1}, p_{2}, p_{3}--p_{n}\right\}$ then $\left[p_{1}, p_{2}, p_{3}-p_{n}\right]$ becomes a start State of DPA
Now $\left[p_{1}, p_{2}, p_{3}-p_{n}\right] \in Q_{D}$
(2) We will obtain 8 transition on $\left[p_{1}, p_{2}, p_{3}-p_{n}\right]$ for each input $8 D\left(\left[p_{1}, p_{2}, p_{3}-p_{n}\right], a\right)=\varepsilon$-closure

$$
\begin{aligned}
& \left(\delta\left(p_{1}, a\right) \cup \delta\left(p_{2}, a\right) \cup \delta\left(p_{3}, a\right) \cup \delta\left(p_{4}, a\right)--\delta\left(p_{n}, a\right)\right) \\
& \quad \Rightarrow \bigcup_{i=1}^{n} \varepsilon-c l o s v \mu e\left(p_{i}, a\right)
\end{aligned}
$$

when a is input $\in \Sigma$
(3) The states obtained $\left[p_{1}, p_{2}, p_{3}\right.$ - $\left.p_{n}\right] \in Q_{D}$ The states Containing final state in pi is a 3 final state in DFA.
Ques Convert the given NPA with \& to its equivalent BFA.

Solution:

$$
\begin{aligned}
& \varepsilon-\operatorname{cosume}\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \varepsilon-\operatorname{cosuru}\left(q_{1}\right)=\left\{q_{1}\right\} \\
& \varepsilon-\operatorname{cosure}\left(q_{2}\right)=\left\{q_{2}\right\} \\
& \varepsilon-\operatorname{cosure}\left(q_{3}\right)=\left\{q_{3}\right\} \\
& \varepsilon-\operatorname{cosure}\left(q_{4}\right)=\left\{q_{4}\right\}
\end{aligned}
$$

Now, let ε-closesere $\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$ bettate A

$$
\begin{aligned}
\delta^{\prime}(A, 0) & =\varepsilon-\operatorname{cosure}\left(\delta\left(q_{0}, q_{1}, q_{2}\right), 0\right) \\
& =\varepsilon-\operatorname{cosume}\left(\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right) \cup \delta\left(q_{2}, 0\right)\right) \\
& =\varepsilon-\operatorname{cosume}\left(\phi \cup q_{3} \cup \phi\right) \\
& =\varepsilon-\operatorname{cosure}\left(q_{3}\right) \\
& =\left\{q_{3}\right\} \text { be state } B
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}(A, 1) & =\varepsilon \text {-closure }\left(\delta\left(q_{0}, q_{1}, q_{2}\right), 1\right) \\
& =\left(8\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \cup \delta\left(q_{2}, 1\right)\right.
\end{aligned}
$$

$$
="\left(\phi \cup \phi \cup q_{3}\right)
$$

$$
=11\left(q_{3}\right)
$$

$$
\begin{aligned}
& ={ }^{\prime \prime}\left(q_{3}\right) \\
& =\left\{q_{3}\right\} \text { be state } B
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}(B, 0) & =\varepsilon-\operatorname{closume}\left(\delta\left(q_{3}, 0\right)\right) \\
& =\varepsilon-\operatorname{cosume}(\phi) \\
& =\phi
\end{aligned}
$$

$$
\begin{aligned}
\delta^{\prime}(B, 1) & =\varepsilon-\operatorname{cosure}\left(\delta\left(q_{3}, 1\right)\right) \\
& =\varepsilon-\operatorname{cosure}\left(q_{4}\right) \\
& =\left\{q_{4}\right\} \text { be state } e
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{\prime}(c, 0)=\phi \\
& \delta^{\prime}(c, 1)=\phi
\end{aligned}
$$

δ / C	0	1
$\rightarrow A$	B	B
B	ϕ	C
C	ϕ	ϕ

* Finite state Machine (FSM) or Transducer:
is A finite state m/c is similar to A. A except that it has the additional Capability of producing opP.

FSM = FA + Output Capability

- Types of Finite state Machine:
(1) Moore M / C

2) (2) Mealy M/C

- Hone Machine:

If the output of $f S M$ is dependent on present
is Estate only then this model of FSM is Known as more mfa.
, Mealy Machine:
is If lethe output of FSM is dependent on present Estate and present input then thess model OfFS is known as Mealy m / c.

- More me definition:

A Moore mje can be descuised by six tuple
) $\left(\theta, \varepsilon, \Delta, s, \lambda, q_{0}\right)$.
(1) $)$ is a finite set of states.
(2) Σ is the input alphabet.
(3) \triangle is the olltput fanctionalphabet
(4) Q_{0} is the initial state.
(5) δ is transition function which maps $Q \times \Sigma \rightarrow Q$
(6) λ is the output function rapping

Example s"Consider the Moore mic shown in fig. below. Construct transition table. What is the output for input string on lo?
fig: Moore

Sol" Transition Table

Now the transition sequence for the string 0110 is

So the $0 \mid p$ is 11110 for the input 8 the output \& $\lambda\left(q_{0}\right)=1$.
Note: - For Moorempe if the input string is of lengthen' the outplet string is of n

QQus What is the o|p for input sthing 0111 ? Present State

- Mealy Machine Definition:

A mealy mlle can be described by sixtuple $\left(\theta, \varepsilon, \Delta, \delta, \lambda, q_{0}\right)$
(1) Q is finite and mon-empty set of states
(2) Σ is in pout alphabet.
(3) \triangle is output alphabet.
(4) δ is transition fun ${ }^{c}$ which maps $Q \times \varepsilon \rightarrow \theta$
(5) λ is output fund. Which maps $\theta \times \Sigma \rightarrow \Delta$
(6) q_{0} is the initial state.

Ques Consider the Mealy male shown en fig. Construct the transition table gi find o/p for Input Sting 01010?
son.

\rightarrow (20) $\xrightarrow[1]{0}$ (at $\xrightarrow[1]{1}$ (22) $\underset{1}{0}$ (21) $\frac{1}{1}$ (222) $\xrightarrow[1]{0}$
$O / p \rightarrow 11111$
Ques Find the output for input string 0011 ?
Sol.

p_{s}	Inputs 1			
	N_{3}	$0 / p$	N_{s}	$0 / p$
$\rightarrow q_{1}$	q_{3}	0	q_{2}	0
q_{2}	q_{1}	1	q_{4}	0
q_{3}	q_{2}	1	q_{1}	1
q_{4}	q_{4}	1	q_{3}	0

$\rightarrow Q_{0}^{0}$
(23) $\xrightarrow[1]{0}$
(az) $\frac{1}{0}$
(24) $\underset{0}{\rightarrow}$
(2,3)

$$
0 \mid p \rightarrow 0.100
$$

- Equivalence of roue \& Mealy Mc:

The meaning of word equivalence is the tho m / cs vevich accepts the same lang. hence equivalence of Moore \&Mealy ma lc means both the m / d generate same $/ P$ string or same Ip string Procedure for transforming a Moore me to corves poncing to Mealy mp:

- Construction:
(2) We have to define o/p fun. λ^{\prime} 'for Mealy m / c as a fun ${ }^{c}$ of pelesent a T We define $\lambda^{\prime}(q, a)=\lambda(\delta(q, a))$ for all states q, and input symbol a.
wy represent any lang. The lana cicron
(2)The transition fund is the same as that of the given Moor $/ 0$
Quelonstruect a Mealy mic which is equivalent to the More m / c given in transition table.
Sol.

Present				
state	Inputs			
Cps)	N_{3}	$0 / p$	Ns	opp
$\rightarrow q_{0}$	q_{3}	0	q_{1}	1
q_{1}	q_{1}	1	q_{2}	0
q_{2}	q_{2}	0	q_{3}	0
q_{3}	q_{3}	0	q_{0}	0

(1)

$$
\left.\begin{array}{rl}
\lambda^{\prime}\left(q_{0}, 0\right) & =\lambda\left(8\left(q_{0}, 0\right)(2) \lambda^{\prime}\left(q_{0}, 1\right)\right.
\end{array}\right)=\lambda\left(\delta\left(q_{0}, 1\right)\right) 子 \begin{array}{ll}
& =\lambda\left(q_{3}\right)=0
\end{array}
$$

Sur change the given More moe into Mealy moe.

ps	Inputs		$0 / p$
	a_{s}	$n s$	
q_{1}	q_{2}	q_{3}	1
q_{2}	q_{1}	q_{2}	0
q_{3}	q_{2}	q_{1}	1

Present				
state				
(ps)	Ns	Input		
$\rightarrow q_{0}$	q_{2}	1	q_{3}	0
q_{1}	q_{3}	1	q_{2}	1
q_{2}	q_{1}	0	q_{2}	1
q_{3}	q_{2}	1	q_{1}	0

fig: Transition Table for Mealy mile

Procedure for transforming a Mealy m/e to a None mlle:
Queconsider the mealy $m \mid c$ described by the Transition table. Construct the More m / c which is equivalent to Mealy m / c.

Present state (ps)				Ns
	$0 / p$	Ns	op	
$\rightarrow q_{1}$	q_{3}	0	q_{2}	0
q_{2}	q_{1}	1	q_{4}	0
q_{3}	q_{2}	1	q_{1}	1
q_{4}	q_{4}	1	q_{3}	0

Present			
state			
Cps)	0	Inputs	1
$\rightarrow q_{1}$	q_{3}	$N s$	$0 / p$
q_{20}	q_{1}	q_{20}	1
q_{21}	q_{1}	q_{40}	0
q_{3}	q_{21}	q_{40}	1
q_{40}	q_{41}	q_{1}	0
q_{41}	q_{41}	q_{3}	0

Heme we observe that the initial state q_{1} is associated with output 1. This means with I/P \&.
we get an output 1 . If the m/e start at state. q_{1}. To overcome telis situation either wë must neglect the response of a wionere mae. to input $\&$ or we must at a hew n starting te \sum_{0} chose state transitions ane ioleutical with those of q_{1} cuiththose output is 0 .

Ques What are limitation \& Application of FA? Sol" Applications:
(1) For the designing of lexical analysis of a compiler.
(2) Used in text editors.
(3) For the implementations of spell checker.
(4) For the designing of transducer.
limitations:
(1) FA. can only count finite input.
(2) It can have only string pattern.
(3) Head movement is in only one direction.
(4) Input tape is read only and only mp it has is state to state.
(5) There is no find and leccogrize set of binary String of os and I^{\prime} 's.
(6) Set of strings over ${ }^{\prime \prime}(\operatorname{ce} \text { and } 9)^{\prime \prime}$ " the have balanced parenthesis.

