Sub Code: RCS401												
R	oll No.											

B.TECH (SEM IV) THEORY EXAMINATION 2017-18 Operating System

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

2. Any special paper specific instruction.

SECTION A

1. Attempt *all* questions in brief.

 $2 \times 7 = 14$

- a. Define Operating System. List the objectives of an operating system
- b. What are the various scheduling criteria for CPU scheduling?
- c. What is the use of inter process communication and context switching?
- d. Write the difference between internal and external fragmentation.
- e. What are the disadvantages of single contiguous memory allocation?
- f. Discuss the usage of wait-for graph method.
- g. Define Busy Waiting? How to overcome busy waiting using Semaphore operations.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- a. Explain briefly Layered Operating system structure with neat sketch. Also explain protection and security.
- b. What is Dining Philosophers problem? Discuss the solution to Dining philosopher's problem using monitors.
- c. Consider the following snapshot of a system:

	Allocated			M	aximu	ım	Available		
Process	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	2	2	3	3	6	8	7	7	10
P2	2	0	3	4	3	3			
P3	1	2	4	3	4	4			

Answer the following questions using the banker's algorithm:

- 1) What is the content of the matrix need?
- 2) Is the system in a safe state?
- d. Consider the following page reference string:

1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

How many page faults would occur for the optimal page replacement algorithm, assuming three frames and all frames are initially empty.

e. Is it possible to have a deadlock involving only a single process? Explain.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Enumerate various Operating System components with their functions in brief.
- (b) Differentiate between (with one suitable example):
 - (i) Interactive and Batch processing System.
 - (ii) Multiprogramming and Time Sharing System.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Downloaded from: uptukhabar.net

- (a) Discuss Mutual-exclusion implementation with test and set() instruction.
- (b) State the Critical Section problem. Illustrate the software based solution to the Critical Section problem.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Consider the following process:

Process	Arrival	Burst
	Time	Time
P1	0	8
P2	1	4
P3	2	9
P4	3	5

Draw Gantt chart and find the average waiting time and average turnaround time:

- (i) FCFS Scheduling
- (ii) SRTF Scheduling\

(b) Consider the following process:

Process	Arrival	Burst	Priority
	Time	Time	
P1	0	6	3
P2	1	4	1
P3	2	5	2
P4	3	8	4

Draw Gantt chart and find the average waiting time and average turnaround time:

- (i) SRTF Scheduling
- (ii) Round robin (time quantum:3)

6. Attempt any one part of the following:

 $7 \times 1 = 7$

- (a) What do you mean by Belady's anomaly? Which algorithm suffers from Belady,s anomaly and how can it be rectified?
- (b) What is Thrashing? What is the cause of Thrashing? How does the system detect Thrashing? What can the system do to eliminate this problem?

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss the Linked, Contiguous and Index and multilevel Indexing file allocation schemes. Which allocation scheme will minimize the amount of space required in directory structure and why?
- (b) Write short notes on:
 - i) I/O Buffering
 - ii) Disk storage and scheduling

Downloaded from : uptukhabar.net