$$
U_{\text {nit }} \rightarrow 5
$$

Fundamental of Communication Engineering:

Q:- Elements of communication/ Q. Block Diagram of fommunication system/
Q. Fundamentals of fommunication system.
Receiver

* Modulation:

$$
\left.\begin{array}{l}
*\left\{\begin{array}{l}
\text { Message signal / } \\
\text { Modulating signal / } \\
\text { Audio signal/ } \\
\text { Base Band signal }
\end{array}\right\} \text { low frequency } \\
\mathscr{W} \text { Barrier Signal } \\
\text { Radio Signal }\} \text { High frequency }
\end{array}\right\} \text { signal }
$$

Modulation is a process of mixing of high frequeny signal with low frequency signal to transmit it to the greater distance.

- Demodulation: It is the process on technique to extract or recover the original information from the modulated signal by seperating the carrier.
- Need of Modulation :
(a) Increases the range of communication:
- At the low frequency, radiation is poor and signal gets highly attenuated, which will be reduced with the increase in frequency of transmitted signal.
-. The frequency of Base Band signal or message signal is low. Hence, it cannot be transmitted over the long distance. Modulation process increases the frequency of the signal, hence, range of the communication also increases.
(b) Reduces the height of Antenna:
- For transmission of radio signal, the antenna freight should be multiple of $\lambda / 4$ where $\lambda=\frac{c}{f}$.

So, the minimum height of the Antenna will be -

$$
\frac{\lambda}{4} \doteq \frac{c}{4 f}
$$

For example - 10 KHz signal is transmitted

$$
h_{\text {min }}=\frac{c}{4 f}=\frac{3 \times 10^{8}}{4 \times 10 \times 10^{3}}
$$

$$
h_{\text {min }}=7500 \mathrm{~m}=7.5 \mathrm{~km}(\text { but }
$$

Now, consider frequency of modulated signal is $10 \mathrm{NH}_{3}$

$$
h_{\text {min }}=\frac{\lambda}{4}=\frac{c}{4 f}=\frac{3 \times 10^{8}}{4 \times 10 \times 10^{6}}=7.5 \mathrm{~m}
$$

(a) Improves the quality of Reception:

With the help of modulation, the effect of noise is reduced to a great extent which improves the quality of receiving signal.
(d) Avoid the mixing of Signals:

If Base Band signals of the same frequency are transmitted then they may get mixed together at receiver's side, hence, by modulation process different carriers can be alloted to each signal which will avoid the mixing of signals.
(e) Allows the multiplexing of Signals:

Multiplexing is the process in which two or more signals - can be transmitted over the same communication channel simultaneously which is possible only with the modulation.
(f) Allows the adjustments in the Band width:

Bandwidth of modulated signal may be made smaller or larger than the original signal by the process of modulation.
instantaneous \rightarrow at every point

1) Amplitude Modulation (AM)
2) Frequency Modulation (FM)
3) Prase Modulation (PM)
4) \Rightarrow Amplitude Modulation (RM):

When the Amplitude of carrier signal gets ctzanged with respect to the instantaneeles value of Base Band er Message Signal is called Amplitude Modulation.
amplitude of carrier signal changes acc. to Base Band signal lat every value of base band ch message sig nat?

Instantaneous value of message signal,

$$
\begin{aligned}
x(t) & =A_{m} \sin w_{m} \\
A_{m} & =\text { Amplitude of message signal } \\
w_{m} & =\text { Angular frequency of message i signal } \\
f_{m} & =\text { frequency of message signal }
\end{aligned}
$$

Instantaneous value of carrier signal,

$$
\begin{equation*}
y(t)=A_{G} \sin w_{G} t \tag{2}
\end{equation*}
$$

$A_{C}=$ Amplitude of carrier signal
$w_{c}=$ Angular frequency ob carrier signal
$f_{c}=$ frequency of carrier signal
Modulated,

$$
\begin{align*}
& V_{A M}=A_{A M} \sin w_{C} t-(3) \\
& A_{A M}=A_{C}+x(t) \quad(B y \text { definition }) \\
& A_{A M}=A_{C}+A_{m} \sin w_{m} t \quad(4) \\
& \therefore V_{A M}(t)=\left(A_{C}+A_{m} \sin \omega_{m} t\right) \sin w_{c} t-(5) \\
& V_{A M}(t)=A_{C}\left[1+A_{C} \sin w_{m} t\right] \sin w_{C} t-(6) \tag{6}\\
& V_{A M}(t)=A_{C}\left[1+m_{a} \sin w_{m} t\right] \sin w_{c} t
\end{align*}
$$

$$
2 \sin A \sin B=\cos (A-B)-\cos (A+B)
$$

$$
\begin{aligned}
& \therefore V_{A M}=A_{c} \sin \omega_{c} t+\frac{m_{a} A_{c}}{2}\left[\cos \left(\omega_{G}-\omega_{m}\right) t-\right. \\
&\left(\operatorname { c o s } \left(\omega_{c}+\omega_{n}\right.\right. \\
&\cos 0=\cos 1-\theta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { frequency } L S B=(f c-f m) \\
& \frac{m a A_{c}}{2}=\frac{A m}{2} \quad\left[\because m a=\frac{A m}{A c}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{\max }=A_{c}+A_{m} \\
& A_{m i x}=A_{6}-A_{m}
\end{aligned}
$$

- Modulation Index: It is the ratio between amplitude of message signal and amplitude of carrier signal which is given by ma $=\frac{A m}{A_{c}}$.

It is also known as Modulation factor, modulation coefficient, degree of modulation or depth of modulation.
In terms of maximum amplitude it is given as -

$$
A_{c}=\frac{A_{m a x}+A_{m i n}}{2}, A_{m}=\frac{A m a x-A m i n}{2}
$$

$$
m_{a}=\frac{A_{m}}{A_{c}}=\frac{A_{\text {max }}-A_{\text {mix }}}{A_{\text {max }}+A_{\text {mix }}}
$$

- Frequency spectrum of AM signal it Amplitude

- Power Relations in AM :-

$$
\begin{aligned}
& P_{\text {Total }}=P_{\text {carrie }}+P_{\text {LSB }}+P_{U S B} \\
& P_{\text {Total }}=\frac{V_{\text {carrier }}^{2}}{R}+\frac{V_{L S B}^{2}}{R}+V_{U S B}^{2} \\
& R
\end{aligned}
$$

All 3 are RMS value,

$$
\begin{aligned}
P_{\text {Total }} & \left.=\frac{\left(\frac{A_{c}}{\sqrt{2}}\right)^{2}}{R}+\left(\frac{\frac{m_{a} A_{c}}{2}}{\sqrt{2}}\right)^{2}+\frac{\left(\frac{m a A c^{2}}{2}\right)^{2}}{R}\right)^{R} \\
& =\frac{A_{c}{ }^{2}}{2 R}+\frac{m a^{2} A_{c}{ }^{2}}{8 R}+\frac{m a^{2} A_{c}{ }^{2}}{8 R}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{A c^{2}}{2 R}\left[1+\frac{m a^{2}}{4}+\frac{m a^{2}}{4}\right] \\
&=\frac{A c^{2}}{2 R}\left[1+\frac{m a^{2}}{2}\right] \\
& P_{\text {total }} \\
& P_{A M}=P_{C}\left(1+\frac{m a^{2}}{2}\right)
\end{aligned}
$$

- Total Power in Side Bands:

$$
\begin{aligned}
P_{S B}=P_{\text {Side bands }} & =P_{L S B}+P_{V S B} \\
& =\frac{V_{L S B}^{2}}{R}+\frac{V_{U S B}^{2}}{R}
\end{aligned}
$$

All values are in RMS

$$
=\left(\frac{m a A c}{2}\right)^{2}+\left(\frac{m a A c}{2}\right)^{2}
$$

$$
=\frac{m a^{2} A c^{2}}{8 R}+\frac{m a^{2} A c^{2}}{8 R}
$$

$$
=\frac{m a^{2} A_{c^{2}}}{4 R}
$$

$$
\begin{aligned}
\text { Power of side bands } & ={A c^{2}}_{2 R}^{\left(\frac{m a^{2}}{2}\right)} \\
P_{S B} & =P_{c}\left(\frac{m a^{2}}{2}\right)
\end{aligned}
$$

- Transmission Efficiency: Jramission efficiency of the AM wave is defined as the ratio of transmitted power contains information to the total power.

$$
\begin{aligned}
\eta & =\frac{P_{S B}}{P_{\text {total }}} \\
& =\frac{P_{c} \frac{m a^{2}}{2}}{P_{c}\left(1+\frac{m a^{2}}{2}\right)} \\
& =\frac{m a^{2} \times 2}{2\left(2+m a^{2}\right)} \\
\eta & =\frac{m a^{2}}{2+m a^{2}} \\
\% \eta & =\frac{m a^{2}}{2+m a^{2}} \times 100
\end{aligned}
$$

Ques
Ques consider the AM signal $m(t)=5\left[1+2 \cos (2 \pi \times 1000] \cos 2 \pi \times 10^{60}\right.$
Determine modulation index, side band frequencies, amplitude of each side band, total power when the resistance is 600Ω and transmission efficiency.
sot $\quad m(t)=5[1+2 \cos (2 \pi \times 1000 t)] \cos 2 \pi \times 10^{60}$

$$
\begin{aligned}
& A_{c}=5 \\
& m_{a}=2 \\
& f_{m}=1000 \\
& f_{c}=10^{60}
\end{aligned}
$$

$$
m_{a}=\frac{A m}{A_{c}} \Rightarrow 2=\frac{A m}{5} \Rightarrow A_{m}=10 V
$$

$$
\therefore \quad m_{a}=2
$$

$$
\text { Amplitude of } L S B=\frac{m a A C}{2}=\frac{2 \times 5}{2}=5 \mathrm{~V}
$$

and USB

$$
\begin{aligned}
\text { Total Power } & =\frac{A c^{2}}{2 R}\left[1+\frac{m a^{2}}{2}\right] \\
& =\frac{5^{2}}{2 \times 600}\left[1+\frac{2^{2}}{2}\right] \\
& =0.0625 \text { watt }
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\frac{m a^{2}}{2+m a^{2}}=\frac{2^{2}}{2+2^{2}}=0.66 \\
& \% \eta=0.56 \times 100=66.6 \%
\end{aligned}
$$

Ques The turned circuit of the oscillator in a simple AM transmittor consists of a $50 \mathrm{\mu H}$, and 1 nF , $\cos 2 \pi \times 10^{60}$ capacitor. If the oscillator output is modulated by audio frequency of 10 KHz . What is the frequency range occupied by the side bands?

Sol

$$
\begin{aligned}
& f_{m H}=10 \mathrm{KHz}_{z} \\
& f_{c}=\frac{1}{\sqrt{L C} \times 2 \pi} \frac{1}{\sqrt{50 \times 10^{-6} \times 1 \times 10^{-9}} \times 2 \pi} \\
& f c=\frac{4.472 \times 10^{6}}{2 \pi} \\
& f_{c}=711.76 \mathrm{KHz} \\
& f_{6}+f_{m}=711.76+10=721.76 \mathrm{KHz}
\end{aligned}
$$

$$
f_{c}-f_{m}=711.8-10=701.8 \mathrm{KHz}
$$

Ques A sinosoidal carrier wave of freq. 1 MHz and amplitude: 100V is amplitude modulated by a sinusoidal. voltage of 5 KHz producing 50% of modulation. Calculate the freq and ample. of $\angle S B$ and USB.

Sol

$$
\begin{aligned}
& f_{c}=1 \mathrm{MHz}_{3} \\
& f_{m}=5 \mathrm{KH}_{3} \\
& m_{a}=50 \%=\frac{50}{100}=\underline{\underline{0}} . \\
& \operatorname{USB} \text { (frequency), } f c+f m=1.005 \mathrm{MHz}_{\mathrm{c}} \\
& \operatorname{LS} B \text { (frequency), } f_{c}-f_{c}=995 \mathrm{KHz} \\
& \frac{A m}{A_{C}}=m_{a}, \quad A_{c}=100 \mathrm{~V} \\
& \angle S B \text { and USB amplitude }=\frac{m a A C}{2} \\
& =\frac{0.5 \times 100}{2} \\
& =25 \mathrm{~V}
\end{aligned}
$$

Ques A 400 W carrier is modulated to a depth of 75% Calculate the total power and the side bands power.

Sol

$$
\begin{aligned}
& P_{c} \text { Gee }=400 \mathrm{~W} \\
& m_{a}=\frac{75}{100}=0.75
\end{aligned}
$$

$$
\begin{aligned}
\text { Total power } & =\operatorname{ma}^{2} P_{C}\left(1+\frac{m a^{2}}{2}\right) \\
& =400\left(1+\frac{(0.75)^{2}}{2}\right) \\
& =512.5 \mathrm{watt}
\end{aligned}
$$

$$
\begin{aligned}
P_{S B}=P_{C} \times \frac{m a^{2}}{2} & =400 \times \frac{(0.75)^{2}}{2} \\
& =112.5 \mathrm{walt}
\end{aligned}
$$

Ques A certain transmitter radiates 9 KW with carrier un modulated and 10.125 KW when the carrier is sinosoidally modulated, Galculate the modulation index. If another sine wave is simultaneously transmitted with modulation index 0,4. Determine the total radiated power.

Sol (i)

$$
\begin{aligned}
& P_{C}=9 \mathrm{KW} \\
& P_{\text {total }}=10.125 \mathrm{KW} \\
& P_{\text {total }}=P_{C}\left(1+\frac{m a^{2}}{2}\right) \\
& \left(\frac{\left.P_{\text {total }}-1\right) \times 2}{P_{C}}=m a\right. \\
& m_{a_{1}}=\sqrt{\left(\frac{10.125}{9 \times N 0^{3}}-1\right) \times 2} \\
& r n_{a_{1}}=0.5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
m a_{2} & =0.4 \\
m a_{1} & =\sqrt{\left(m a_{1}\right)^{2}+\left(m a_{2}\right)^{2}}=\sqrt{(0.5)^{2}+(0.4)^{2}} \\
& =0.6403
\end{aligned}
$$

$$
\begin{aligned}
P_{t} & =P_{c}\left(1+\frac{m a^{2}}{2}\right) \\
& =9\left(1+\frac{(0.64)^{2}}{2}\right) \\
& =10.845 \mathrm{KW}
\end{aligned}
$$

$$
\left(m_{a)} \text { totat }=\sqrt{\left(m_{a_{1}}\right)^{2}+\left(m_{a_{2}}\right)^{2}}\right.
$$

Ques The unmodulated RMS current of an AM wave is 8.93 Amp and increases to 11.25 Amp with modulation. Determine the modulation index.

Sol $\quad I_{c}=8.93 \mathrm{~A}$

$$
I_{t}=11.25 \mathrm{~A}
$$

$$
\begin{gathered}
P_{t}=P_{c}\left(1+\frac{m a^{2}}{2}\right) \\
I_{t}{ }^{2} R=I_{c}^{2} R\left(1+\frac{m a^{2}}{2}\right) \\
(11.25)^{2}=(8.93)^{2}\left(1+\frac{m a^{2}}{2}\right) \\
m a=1.08
\end{gathered}
$$

Bandwidth of AM wave $r_{-}(f e+f m)-\left(f_{c}-f_{m}\right)$

$$
\beta \omega=g f_{m}
$$

(i) $m_{a}>1$ ie $V_{m}>V_{c}$ = over modulation
(ii) $m_{a}<$, ie $V_{m}<V_{c}=$ under modulation
(iii) $m_{a}=1$ ie $v_{m}=V_{c} \Rightarrow 100 \%$ modulation Analog modulator

$V \mathrm{Cl}_{5}$

16 th APril, 2018

* DSBSC (Double side band Suppressed barrier):

$$
\begin{aligned}
& V_{A M}(t)=V_{c} \sin w_{c} t+\frac{V_{m}}{2} \cos \left(w_{c}-w_{m}\right) t \\
&-\frac{V_{m}}{2} \cos \left(w_{c}+w_{m}\right) t \\
& V_{D S B S C}(t)=V_{A M}(t)-V_{0}(t)
\end{aligned}
$$

$$
V_{D S B S C}(t)=\frac{V_{m}}{2} \cos \left(w_{c}-\omega_{m}\right) t-\frac{V_{m}}{2} \cos \left(w_{c}+\omega_{m}\right) t
$$

$$
P_{\text {DSBSC }}=P_{C}\left(\frac{m a^{2}}{2}\right)=\frac{V_{c}^{2}}{2 R}\left(\frac{m a^{2}}{2}\right)
$$

As carries does not
\Rightarrow Frequency spectrum: contain any message, the power is wasted

Amplitude
$\begin{array}{ll}\frac{v_{m}}{2} & \frac{v_{m}}{2} \\ f_{c}-f_{m} & \\ f_{c}+f m\end{array}$ frequency

$$
B W=2 \mathrm{fm}
$$

DSBSC:

* SSBSC (Single Side band Suppressed farrier):
product modulator

$$
\begin{aligned}
V_{\text {ABC }}(t) & =\frac{V_{m}}{2} \cos \left(w_{c}-w_{m}\right) t-\frac{V_{m}}{2} \cos \left(w_{c}-\omega_{m}\right) t \\
V_{\text {SSBSC }}(t) & =\frac{V_{m}}{2} \cos \left(w_{c}-w_{m}\right) t=\frac{V_{m}}{2} \cos \left(w_{c}+w_{m}\right) t \\
& P_{\text {SSBSC }}=P_{c}\left(\frac{m a^{2}}{4}\right)
\end{aligned}
$$

Amplitude

* AM Detectors :- (or AM Demodulators)
1). Square Law Detector

2) Envelope Detector
3) \Rightarrow SQUARE LAW DETECTOR :

RC Filter
The circuit diagram of a square law Detector consists of a square Law Device which is a non linear Device and low pass RC filter, shown in the figure.
\Rightarrow operation and Analysis:
The output of a square law device is non-rinear and it is expressed mathematically as

$$
\begin{equation*}
v_{2}(t)=a v_{1}(t)+b v_{1}(t) \tag{1}
\end{equation*}
$$

apnrzom SO, the input to the square Law detector is AM torpid modulated wave which is given by -

$$
\begin{aligned}
V_{1}(t) & =V_{G}\left[1+m a \sin w_{m} t\right] \sin w_{c} t \\
v_{1}(t)= & V_{c}[1+m a x(t)] \sin w_{c} t-(2) \\
x(t) & \rightarrow \text { message signal }=\sin w_{m} t
\end{aligned}
$$

On substituting equen (2) in (1);

$$
\left.\begin{array}{rl}
V_{2}(t)=a_{1}\left[v_{c}(1\right. & \left.\left.+m_{a} x(t)\right) \sin w_{c} t\right] \\
& +b v_{c}^{2} \sin ^{2} \omega_{c} t\left(1+m_{a} x(t)\right)^{2} \\
=a_{1} v_{c} \sin w_{c} t\left(1+m_{a} x(t)\right) \\
& +\frac{b v_{c}^{2}}{2}\left(1-\cos 2 \omega_{c} t\right)\left[1+m_{a}^{2} x^{2}(t)\right] \\
\left.+2 m_{a} x(t)\right]
\end{array}\right]
$$

2) \Rightarrow Envelope Retector:

\Rightarrow The Envelope Detector is a very simple and effective device which suitable of detecting a narrow band AM signal.
\Rightarrow The Envelope Detector produces the out put signal that follows the envelope of the input AM signal exactly.

- Working of Envelope Detector:
\Rightarrow The standard AM uave/signal is applied as a input to the Detector (Demodulator).
\Rightarrow In every positive cycle of the input the detector diode becomes forward bias and charges the filter capacitor ' C ' connected across the load resistor ' R ' to the peak value of input signal.
(1) \Rightarrow As soon the cap acitor charges to the peak value, the diode stops conducting and capacitor ' C ' starts conducting between the positive peaks as shown in the waveform.
\Rightarrow The discharging will continue until the next positiv cycle and when the input signal becomes greater than the capacitor voltage, diode conducts again
and the process repeats itself.

Also write $1-2$ lines about waveform.
2) $* \Rightarrow$ Frequency. Modulation:

When the frequency of carrier signal gets changed with respect to the instantaneous value: of Base Band on Message signal is called Frequency Modulation:

$$
\begin{align*}
& V_{m}(t)=V_{m} \cos w_{m} t \Rightarrow \text { Message signal } \\
& V_{c}(t)=V_{c} \cos w_{c} t \Rightarrow \text { bandier signal } \\
& V_{F M}(t)=V_{c} \cos \theta \quad \Rightarrow \text { EM signal } \tag{IO}
\end{align*}
$$

$$
\left|f=101 K_{f} V_{m} \cos 0_{m}\right| \rightarrow \text { srom definition }
$$

Mullplying by 2π onboth the sides,

$$
\begin{align*}
& 2 \pi \%-2 \pi \cdot f+2 \pi k_{f} V_{m} \cos u_{m} t \\
& u \omega_{c}+2 \pi k \cdot V_{m} \cos \omega_{m} t \tag{4}
\end{align*}
$$

Intcgrating cqu" (i) wort 't'

$$
\begin{aligned}
& w_{t}=w_{c} t+2 \pi K_{f} \times 11, \times V_{m} \sin \omega_{m} t \\
& D=w_{c} t+\frac{2 \pi K_{f} V_{m} \sin \omega_{m} t}{w_{m}} \\
& D=w_{c} t+\frac{-2 \pi K_{f} V_{m} \sin w_{m} t}{2 \pi f m} \\
& D=w_{c} t+\frac{K_{b} V_{m} \sin w_{m} t}{f m}
\end{aligned}
$$

Now, pulting the value of θ in equ n (8)

$$
\begin{aligned}
& V_{P N}(t)=V_{c} \cos \left[w_{c t}+\frac{K f V_{m} \sin \omega_{m} t}{f m}\right] \\
& \frac{\beta}{f_{m}}=m_{f}=\frac{k_{b} V_{m}}{f_{m}} \Rightarrow \text { Modulation } \begin{array}{c}
\text { ondex } \\
\text { of FM }
\end{array} \\
& K_{f} V_{m}=\delta \Rightarrow \text { frequency deviation } \\
& V_{F M}(t)=V_{C} \cos \left(\omega_{c} t+m_{f} \sin \omega_{2 n} t\right)
\end{aligned}
$$

Introduction to Networks \& Date Commune. cation-

Data Communication-

- When we communicate, we are sharing informath This shaving can be local or remote.
* local communication usually occurs facetoface wick while remote communication takes place over distance.
Ineans of communication (telephony, telegraphy television etc)
Pats -
refers to facts, concepts 4 instructions. In computer information systems date are represented by binary information units (or bits) produced 4 consumed in the form of $\mathrm{O}_{5}+1 /$. * Date Communication is the exchange of date (i the form of 0 's 41 's) between the devices via some form of transmission uredium
* Date communication is considered locel if the communicating devices are in the same building or a similarly restricted geographical area 4 is considered remote if the devices are farther apart.
for date commininication to occur, the commend-eating devices must be pout of a communication system mate up of a communication of $H / \omega 4$ ssw.

The effectiveness of a data communication olsen depends on three fundamental characteristics:
1.) Delivery:

The system must deliver dote to the correct destination. Date must be received by the intended device or user \& Only by that denis. or user.
2) Accuracy- The system unit deliver date accurately. Date that have altered in tramsinien \& left uncorrected \& unusable.
3) Timeliness - The system wurst deliver dots mia timely hiauner. Date delivered late are useless. * In case of video, auction a voice date timely delivery means delivering date as they ane produs in the same order that they are produced t without Aigwificant delay. This tain of delius. is called seal-time transmission.

Data Communication System Components-
A DCN is made up of five Components

Sounder Media. Receives numbers, picture sound or video of any combination Scanned with Camscanner

Sender - is the device that sends the dotemenge. If may be a computer, wonk station, telephone handset, bide o camera 4 to on.

Receiver - is the device that receive the message. If can be a computer, workstation. telephone handset, IV 4 so On.
Medium - is the physical path by which a menage travels from An den to Re. It can be twisted pair wine, coaxial cable, fiber optic cable, laserer radio cones.
Protocol - is a set of rules that governs dote Communication. It represents an agree. went between the communicary devices.
Line Configurations:-

1) Point to Point Connection -

- A Pto P Connection provides a dedicated lint between two devices.
- Entire capacity of the link is reserved for for transmission between these two devices only.
Multipoint connection -
* In such a connection more two devices there a single link.
\rightarrow In the multiporint connection the chanel capacity is shared.

Types of Communication: Simplex, Half Tuples
full Duplex: full Duplex:

1) Simplex Systems -

In these systems the information is communicates hi only one direction.
Ex- TV broadcasting, radio CPU to monitors, CPU to printer
2) Half Duplex Systems -

* These systems are bidirectional.
- They can transmit as well as receive but hot simultaneously.
\rightarrow When One device is ending the other one is receiving vice versa.
Full Duplex Systems-
* They allow the communication to thee e place a' both the directions Aimultanously.
* There systems can transmit as well as receive, simultaneously. for (E6. telephow)
* Computer Networks -
N / ω is a communication system which supp or many users.
* Comparer Nw is a system which allows communication among the computers convected mi the N / ω.

Distributed System:

* If One computer can forcibly start, stop or control another the computers ane not autorno mons.
- A Aystem with one control unit 4 many slaves or a large computes with remote printers \& terminal is not called a computes x / ω ifs coles a Distributed System.
* In distributed system the existence of multiple autornomons computers is not visible to the user.

Need of Computer N/W:-
i) Sharing the resources such as printers among
all the users.
ii) Sharing of expentine sw 4 database.
(iii) Communication from one computes to the other.
iv) Exchange of tets \& hiformaxion amongst the levers,
via the N / w.
v) Shaving of aiformation own the geographically
wide areas.
vi) for connecting the computers between virions buildings of an organization.
vii) for educational purposes.

Come Components of a Computer N/W-
i) 2 or more computers.
ii) Cables as links b/w the computers.
iii) A NIC on each compute..
iv) Switches
v) A Sw called Nw operating system.

Benefits of Computer N/ws.
i) Increased speed.
ii) Reduced cost.
iii) Improved Security.
iv) Centralized Sw mangements.
v) E-mail
vi) Flexible access

Disadvantages of N/ws -
i) High cost of installation
ii) Requires time for administration
(iii) Failure of Server
iv) Cable faults

Computer N/W Criteria-

* N/w is a Connuemication Aystem which Supports many users.
\rightarrow A N/w uniat be able to meet certain.

Criteria -
i) Performance -
performance can be mearmed hi many ways-
a) in terms of transit time (the amount of tire required for a message to travel from one delice to the other.
b) Response time (the tine between enquiry \& response)
C) The other factors deciding the performance

1) No. of uses 2) Type of transinisnion unedivin3) Capacity of connectiy H/W
2) Efficiency of sow
d) Re liability (it decides the frequency at which N/W failure takes place.
e) $\frac{\text { Security- }}{\text { protection of date from the unauthorized }}$ user or access.

Uses of Computer Networks -

1) Service Provided by the N / w for Companies-
a) Resource sharing
b) High reliability due to alternative sources of date
c) Money Saving
d) Communication medium
2) N/ws for People-
a) Access to remote niformation
b) Perse to person communication
c) Interactive entertainment

The OSI Reference Model

Reference Model-
i) The OSI Ref. Model ${ }^{2}$) The TCP/IPRet (Open Source. Interconnection) has been deme loped by In OSI Ref. Model - to ensure world aide date commumidin system convertible to exch other, standards has been developed.
functions of Eiffenat Layers -

1) Physical Cayes -

* To activate, mesitain a deactivate the physical Comechor.
- define voltage 4 data rates needed for to.
- 10 convent the digital bi's unto electrical sig.
* To decide whether to is Aingplese, helf duplue full duples.
- Exr of the physical layer profocol ane Rs-232 or Rer-449 stahdards.
© LL-
* Syuchroaizetion 4 error control
* Enable the evror detection.
* framming
- DLL onsures reliable to. foneach
(IEEE) message.
Ex of DLL protocols (HDLC, SDLC $4 \times .45$
NL-
, To rooute the Aiqual.
* packetijiy
- responatible fer ulc to malc coum".

TL-
rale $*$ decides if the dete transaision Ahould take place on II path or singal path.

Multspliny, splitting or segminen * error contral 4 flow contral for proces tro process delivery.

* TL Can be cither connectionless or connection oriented.

SL=

* establishes, Mnanitanix \& Aynchromises the interaction between conmunicefiy Aystans.
* Session management (half dupleix)
- check points.

Presentation Layer-
syntex a semantics of the cirformation exchanged between 2 conmenicetion Aystans.

* Translation (ASCII or EBCDIC)
- encryption af tx \& decryption at fo.
- date comprestion

AL-

* It provides services that directly support user application such as date base access, e-mail a file transfer.
TCP/IP Reference Model- (Traswisrion Control propocol/Intenct
- This is the referencer unodel Cohich Was used earlier by ARPANET \& then it is being
used in the riternet. lased in the Internet. I
a rexarch x / ω Ap onsored by the us dept of deface.

NL

$$
\Delta L L
$$

$$
\begin{aligned}
& \text { HTTP, NNTI, } \\
& \text { TELNET, FTP, SMTP, INS } \\
& \text { TAP, UP } \\
& \text { IP } \\
& \text { ARPANT, SATNET LAN }
\end{aligned}
$$

Unit- 1
Introduction to Wireless Communication systems \rightarrow

The ability to communicate with people an the move has evolved.
Guglieho Marconi first demonstrated radios ability to provide continuous contact with ships theiligg the English channel. That was wi 18974 Aince, then new wis less communication methods 4 services have been adopted by people throughout the wist.

 Evolution of Mobile Radio Communications \rightarrow Evolution phase (i) The fioneer-Phase (1921-1947) Mobile telephone secures began in 1940 (ITS Mobile telephone service). Also throw as nemseal Telephai

* The early FM push-to-talk telephony stems syaultalus aid of the lite $1940{ }^{\circ}$ used 120 KHz oof RF RW M in a half-duplese mode (ii) The Thitial Commercial then * In 1946 the first public mobile telephone service was introduced in 25 major American cities.
* Each system used a single, high power transmitter \& large' tower to cover distances of own 50 km . the difficulty in manduridth was used because of the difficulty in mass-procuccing tight RF filters low worse, fount and receives amplifiers.
In 1960st IMTS (Improved Mobile Telephone system.).
* With IMTS telephone compare be be
melees. \& ".
Downloaded from : uptukhabar.net Scanned with CamScanner

Introduction to Wireless Communication Systems \rightarrow

The ability to communicate with people On the wove has evolved.
Gugheho Marconi first demonstrated radios ability to provide continuous contact with ships tailing the English chanel. That was wi 18974 tinge then new wishes communication methods 4 Aervices have been a doped by people throughout the wisd. Wireds com an apple bypythrope the duglophit adeptly Evolution of Mobile Radio Communications \rightarrow Evolution phase (i) The fioneer-Phase (1921-1947) Mobile telephone services began hi 1940's (MTS Mobile telephone service). Also turnon as nasveal Telophou

- The early FM push-to-talk tell phon systems aparibal max of the lite $1940{ }^{\circ}$ used 120 KHz Hog RA BW in an and half-duplex mode (ii) The Thitial Commercial Phon * In 1946 the first public mobile telephone sewica was introduced in 25 major American cities.
* Each system used a single, high power transmitter \& large tower to cover distances of our 50 km . * The Large RF Bandwidth was used because of the difficulty in mass-prockucing tight RF filters 4 low worse, fort and receives amplifiers.
In 1960s \rightarrow IMTS (Improved Mobile Telephone System).
* With IMTS telephone companies began offering fat duplex, auto dial, autortrinting
"Wireless Communication is simply a medium to communicate from one device to another device without having any physical link between them."
phone systems.
* IMTS used *erveral carrier frequencies so several simultaneous mobile call can be handled.
* Directly can be dial from PSTIN so operator eliminated.
IMTS a MTS TX power $\rightarrow 100 \mathrm{~W}$ to 200 W range Mopilu Unify M ed power $\rightarrow 5 \mathrm{~W}$ to 25 W .
So they can cower a wide area using one I BS T^{x}.
Limitation -
high cost, limited availability \& harrow fregnecy
allocation
Today - Mobile becomes portable.
" Mobile means moving at high speed such as
in a boat, airplane on autainobile. iiiin Cellular curlers Bell laboratories developed Cellular Concept in 1960 \& 19 Jos.
During 1950 \& $~ 1960$ SL developed techniques of Cellulter radiotelephony (the concept of breaking ea ny a coverage zone (mkt) in to small cells, each of Which reuse portions of the spectrum to \uparrow spectrinn usage at the expense of greater system bifrost.
In 1983 \rightarrow The FCC (Federal Communication Commision) finally allocated 666 duplex channels (40 MHz of spectrum wi the 800 MHz band each chanel haig a one way BW of 30 ktin fora total spectrum occupancy of 60 kHz for each duplex. chanel) for the U.S. Advanced Motile Phone System
- In 1989 , the fCC granted an additional 166 Channels $(10 \mathrm{MHz})$ to U.S. cellular service providers to accommodate the rapid growth 4 demand.
- In 1991 , the first US Digital Cellular (USDC) system H/W was installed hi major U.S. cities.
* The USDC *standard (Electronic Industry Association Interim Standard IS -54 \& later IS-136) allowed cellular operators to replace gracefully some Aingle-user analog channels with digital channels which support three users in the same 30 kHz sw.
- The capacity hiprovement offered by USDC is 3 times that of AMps because digital Modulation, speech coolie 4 TDMA are used in place of analog $\mathrm{FMO} \&$ FDMA.
* IS -136 will eventually be replaced by wide band CDMA technology. Cuivem the rate of digital signal processing advancements, speech coctuy technology
will indeare the capacity the 6 users will inaeare the capacity the 6 users pen channel in the same 30 kHz BW with ir a fur years.
* A cellular system based on CDMA (Code division multiple access) ursa developed by Oral comm, the I Atandardized by the TIA (Teleconmemications) Industry Association) as an IS -95 .

Advantages -
\& \rightarrow It supports a variable number of users ai 1.25 HHz ? wide channels unify direct sequence spread spectrum.

* In AMPS system requires that the signal be at least 18 AB above the co-chaurel interference to provide acceptable. call quality, CDMA Systems can operate at much larger interference levels because of their hikerent interference resistance properties.
- Capacity Improves \rightarrow

The ability of CDMA to operate with a much tAmales SNR than conventional harrowband PM technologies allow CDMA systems to use the same Aet of frequencies ai every cell, which provides a large improvement ai capacity.

* Unlike other digital cellular systems, the Qualcomm system uses a variable rate vocofer with voice activity detection which considerably reduces the required dits rate 4 also the battery chain by the mobile transmitter.
In 1990's \rightarrow hew specialized mobile radio service (SMR) was developed to compete with US cellular radio carriers.
- By purchasing small groups of redo system licenses from a large umber of independent private ragis Aevice providers throughout the country, Nextel 4 Motorola formed an extended SMR (E-SMR) hetwask in the 800 MHz band that provides capacity - Aererices Alvilas to cellular.
* Using Motorola's integrated ratio system (IRs), SMR aitegrates voice dispatch, cellular phone service, messaging \& del transmission capabilities on the same N/W.
In 1995 \rightarrow Motorols replaced MIRS with the bitegrated digital enhanced Netwask.
PCS (Personal Communication Service) licenses i. the $1800 / 1900 \mathrm{MHz}$ band.
Reasons for developing A Cellular Mobile Telephone Systern \rightarrow
Limitations of Conventional mobile telephone system
(a) Lionited Service Capability (No handoff)
(b) Poor Service
(c) Inefficient frequency spectrum Utilization (No freq. reuse)
one large power T^{∞} is used.
Frequency for Radio T^{x} communication \rightarrow Twisted

The Duration of 1970-2011 may be subdivided in the form of Generations as -
The first Generation (1G) Analog Cellular Systems \rightarrow
Main dh's of first generation systems are given as follows:

* Based on analog technology
* Use frequency undulation
* Its transport architecture has the mobile Unit, the base station \& mobile switching centre (MSC)
* Provides low rate dots transmission between the base station 4 the mobile User.
* Speech signals are digitized on time division. multipleset format for tranmission.
* This generation systems used FDMA technique in diplex mode.
* Free, band $800-900 \mathrm{MHz}$.
first Generation Systenos

The each cell base-station is connected to Main switching Center (MSC). The MSC is the master controlling twitching Center which provide inter connectivity between Publ
Suitchis Telephone N/W (PSTN) on (wired N/w) to cellular mobile N / ω.

The Second Generation (2a): Digital Cellular Systems -
some advance mane over la systems. Mainfeatives. of $2 a$ are

* All 4 types of ci formation text, pictures, date $4-$ Voice are supported.
* Developed for digital cellular, mobile dates CLAN?

Several Voice channels onto one cavies, therefore liprovity spectral utilization lite FDMA/TDD
, Uses digital modulation techniques.

- More robust to niterference.
- flexible BW.
* New services including authentication, dits services, encryption of speech 4 date 4 other integrated services digital N/W (ISDN) Capabilities as compare to It Gen services.
* Introduce the concept of base-station controller, (BSC) over several base-station.
- More efficient, mobile controller handoff ie. MAHO (mobile assisted handoff)
* Channel BW varied between $25-1250 \mathrm{KHz}$.
* CDMA was introduced at the end of 2h.
- Bit rate adopted was higher with better error detecting capabilities.
- Some Impestant Atandardo developed were GSM, IS -54, IS -95, JDC, NADCet.

The Third Generation (3G) \rightarrow
The migration to the $3 G$ mobile system was to develop an international standard to provide "any type of service, at any time, to any one 4 any where.
key features of 3G or IMT (International Mobile Teleconnmication) -2e00 are:

* High degree of interoperatibility
* Highly reliable services
- Global roaming facility
* Compatibility with all current standards
* Capability for multimedia applications vicludigo audio, video, text 4 date services.
* Wireless internet access upto 2 mops.
* Use advanced time division mulultiple access (ATDMA), code division multiple access (CDMA) Collision tense multiple access (SMA), spread Apectorem 4 harrow-band digital frequency division multiple access (ADm)

Examples of $3 G$ systems are -
(i) IMT-2000 (ii) Universal Mobile Telecommanichi System (UMTS) (iii) Mobile Broad band System (MBS) (iv) Wireless Local Area N/w (WLAN)

4G (forth generation)- MAGIC (Mobile Multiindia, anytime, any where, global Mobility support Integrated wireless solution 4 customised personal AUwia)
peak download speed requirements for 4 a venice at $100 \mathrm{mbl} / \mathrm{sec}$ for high mobility devices 4 I Ubittor How low mobility devices.

* flexible channel BW(5-20 MHz) optionally upto 40 mHz .
- Smooth handoff a cross Getrogencous N/ws.
* Seamless ca hectivity a global rocanis multi' $\mathrm{L}_{\mathrm{L}} \mathrm{N} / \mathrm{W}$

Berefts -
erllsers - select N/w depending on pivice reguirement 4 cost

- Hocers to vew Aerurices.
ir eperation - Respord to variations rtri\#\#c demand (load balancing). soorporate service enhencement.
uoid derelopment of wew persanalised Luss tomited services.
er hanufacturers-
isinge platform for all markets. - Ircreasedflesable afficiant production.

Limitation of $4 G \rightarrow$
(i) Mobile station-

- prultivode user Terming phiricless Aystem Disco.
very.
* Wireliss systam relection.
(ii) Systen-
* Terminal Mobility
- N/w In frastoructme

4 Qos Anpport,

- fault Tolerence $<$ Securz
(iii) Service -
mult-operatort Billing system.
Personal Mobility

GSM (Global System for Mobile Communication)-
\Rightarrow GSM is a digital mobile network that is widely used by mobile phone in Europe and other pants of the worth.
\Rightarrow GSM uses a variation of TDMA (Time Division multiple access) and is the most widely lesed of the three digital wireless telephony technologies TDMA, GSM \& CDMA (Code division multiple Access).
\Rightarrow GSM digitizes and Compresses date, then tads it down a channel with two other streams of user date, each in its own time slot.
\Rightarrow It operates at either the 900 MHz or 1800 MHz frequacy. band.
\Rightarrow GSM has maximum date speed of $5.6 \mathrm{kbit} / \mathrm{sec}$ and is based on circuit switching technology.
GPRS (General Packet Radio Service) \rightarrow
\Rightarrow GPRS will increase opportunities for higher revenues and enable hew, differentiated services and tariff dimensions to be offered.
\Rightarrow GPRS combines mobile access with Internet protocol based services, using packet date transmission that makes highly efficient use of radio spectrum and enables high dots speeds.
It gives users increased BW, making it possible and cost-effective to remain constantly connected, as well as to thad and receive date as text, graphics and video.

GPRS is a packet-based date bearer Aervice for wireless Communication services that is delivered as a network overlay for GSM, CDMA and TDMA.
GPRS date speeds will range from $14.4 \mathrm{kbit} / \mathrm{s}$ (Using one radio timestof) to 115 kbiths and offer Continuous correction to the Internet formobsle phone and computer users.
hIM
The frequency bands used hi the system are 900 MHz and 1800 MHz that helps to identify the communication channels and manage the protocols associated.

GSM is good at controlling circuit switching traffic and manages all the circuits wi the network to control the traffic of the mobile devices.

The location area concept is used so that the mobiles are traced and commemicele dish a location with bi the GSM returerk.
appS
There are $850,900,1800$ and 1900 MHz to manage tu System frequency and to Support the communication 850 and 19 coMHz is used hi America and other frequencies ai Europe, Attic Africa and the middle East GPRS is good at handling pike and even the dells is transferres why form of packets. Hence the traffic is also controlledospt and manages the pts in the Lehwork of GPRS.
The routing area concept is used as the date is transferred as packets and these que used in the cominnication of the modite devices.

It takes a lon time to Anetwork connection is done correct with any we wonk faster bi the system as packet dot through usm as it has cisanit Aurithing and manes it through the Aymunetric mode of transmission. The dato transmission is monitored and managed through circuits in the network.
\Rightarrow Internet service is not \Rightarrow Internet services are provided provided ni GSM and this hakes communication harder bi the system. Communication has to be done through messages or calls.

GSM does not have GPRS wicorporated bi the System and hence it need not manage other services when GSM is in use. This makes communication simple. Cmprovidesits service hi G all countries and remote areas.
Single time plots are allowed peruser bi the system.
is used ni apps. Date transmission
through packets makes the system to manage the date and sad message bi the asymmetric mode of transmission. The maseinum speed is 114 bps. hi GPRS and this is done with wireless systems. Hence the hiternet can be used even hi remote areas and com municabion is done through emails or other messaging services with the hitenuet.
GPRS aicorporates GSM in the N/W but the commemicetion is made Ample by allowing GSM services even when the user is usaf GPRS services. Thus apps modifies GSM Nehonk.
GPRS services cannot be offered wi all the corm tries and remote areas.

Multiple time slots are allowed to the uses in the System and this hakes the user use different applications at

CODE DIVISION MULTIPLE ACCESS (COMA),
Code division multiple access (CDMA) is a chanel access method used by various radio communication technologies.
CDMA is an example of multiple access, where Acuoral transmitters can tend ciformation simulturn Over a single communication charnel.
This allows several users to share a band of frogur To permit this without undue literference between the users, CDMA employs Spread spectrum techundy and a special coding scheme.
This Technology is commonly used ni Ultra-high Frequency (UHF) cellular telephone systems, bands ranging between the $800 \mathrm{MHz}-1.9 \mathrm{GHz}$.
Many different "Aignels "base band with different typrow codes can be modulated on the same carrier to allison many different users to be, supported. Using different or tho goral codes, interference between the signals is minimal.
Conversely when signals are reccined for om Acverul mobile stations, the base station is Capable of isolating each as they have different Orthogonal Apreadiy codes.
CDMA Capacity - depends on
i) Processing Gain
2) Signal to Noise Ratio
3) Frequency Reuse Efficiency

SATELLITE COMMUNICATION -
Satellite Communication is the method of traniporty information from one place to another using a Comenumication satellite in orbit around the Earth. A communication satellite is an artificial satellite Qu. that transmits the signal via a transponder by creating a channel between the transmitter and the receiver loceled at different locations on the Earth.

ELEMENTS OF SATELLITE COMMUNICATION -
Need for Satellite Communication \rightarrow
There are different ways to commmicate and the propagation of these
7) waves can take place in different ways. Ground wave propagation and skywave propagation are the two ways ai which communication took place for a certain distance. The maximum distance covered by them by is 1500 km and this was overcome by the introduction of satellite commemication.

Element of Satellite Communication

How Satellite Communications Wonk?
The Communication satellites one Similar to the space sinirrors that help us hi bouncing the signals such e radio, siternet dits and television from one side of the earth to another. There are three stages that are involved which explain the working of satellite
communications. There are:
\rightarrow Uplink
\rightarrow Transponders
\rightarrow Downing
Let's Consider an excangle of signals from a television.

In the first Stage, the signal from the TV broaden On the other Aide of the earth is first beamed up to the satellite from the ground station on the eats. This process is known as uplint.

The second stage involves transponders such as radio receivers, amplifiers and transmitters. These transponders are used for boosting the
licoming signal and to change their frequency licoming signal and to change their frequency So that the out going are hot altered. Depending On the bicoming signal ounces. the transponders vary.
The final stage livobes a dowonlinkt in which the Sets is sat to the other and of the receiver on the eatho There is one uplink and multiple downlinks.

Advantages of satellite Communication-

1) Installments of circuits are easy.
2) The elasticity of these circuits is excellent
3) Using Satellite commmicesion, every carrier of the earth can be covered.
4) The veer fully controls the Network.

Disadvantages of Satellite Communication -

1) Initial expenditure is high.
2) Thar are chances of blockage of frequencies.
3) Propagation and interference.

Application of Satellite Coswiviction
Telephone, Digital Cinema, Military, Television Radio Broadcasty, Internet access, Disaster Management
RADAR - (Ratio Detection and Ramify Systen) It is basically an electromagnetic system used to detect the location and distance of an object from the point where the RADAR is placed. It works by radiating energy ito Apace and wonitorviy the echo or reflected signal from the objects. It operates li the UHF and microwave range.

Element of Roof Comanaication -

6 major elements of a Radar System -
Transmitter it combe a power Amplifier like a Klystron. Travelling Wave Tuble or a power Oscillator like a Magnetron. The signal is first generated using a waveform geverator and then amplified in the power amplifies.
Waveguides - are transmission lines for trammisis of the RADAR signals.
Antenna - The antenna used can be a parabolic reflector, planar arrays or electronically steed phased arrays.
Duplescer- A dupleser allows the antenna to be use as a transmitter or a receiver. It can be a gases device that would produce a short circuit at the ciput to the receiver when transmitter is woskiy. Receiver- It can be super heterodyne receiver or any other receiver which consists of a processor to process the signal and detect it.

Threshold Decision \rightarrow The output of the receiver is compared w th, a threshold to detect the presence of any object. If the output is below any threshold, the presence of noise is assumed.

Applications

1) Military Applications
2) Air Traffic Control
3) Remote Sensing
4) Ground Traffic Control
5) Space

Downloaded from : uptukhabar.net

