Unit-I (Differential Equators),

Definition :- An Equation involving derivatives of one or more dependent variables with respect to one or more independent Variables is called differential Equation.
Examples (1) $y_{-1} \sin x=e^{x}$ (Not differential Equation)
(2) $\frac{d y}{d x}=x-1 \sin x$
(3) $\frac{d^{4} x}{d t^{4}}+\left(\frac{d x}{d t}\right)+\left(\frac{d^{2} x}{d t^{2}}\right)=e^{t}$
(4) $y=\sqrt{x} \frac{d y}{d x}+\frac{k}{\left(\frac{d y}{d x}\right)}$ \qquad
(5) $p \cdot \frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}$
(5) $\quad \frac{\partial^{2} v}{\partial t^{2}}=k \cdot\left(\frac{\partial^{3} v}{\partial x^{3}}\right)^{2}$ \qquad
(7) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 \quad$ (Laplace Equation)
(8) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)$ \qquad (7) (ware Eq)
(9) $\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)$ \qquad (Heat Eq.)

(Partial differential Equation)
(ordinary diff equation)
O.D.E

Def:- A differential Equation involving derivatives of one or more dependent variables w.r. to the single independent variable, is called O.D.E.
Examples (2), (3), (4), \& (5).

Def. A diff Eq. involving partial derivatives of one or more dependent Variables with respect to more than one independent varibles
Examples (6), (A) (8) and (9).

Order: - The order of the differential Equation is the order of. highest order derivative involving in the differential Equation
Degree The degree of the differential Equation is the power of the lightest order derivative involving in the differential Equation when the diff. Equation is free from radical signs and fractional powers.
Exp (2) having order $=1, \quad D=1$.
(3) $, \quad 0=4, \quad D=1$.
(4) Can be put in the form $y\left(\frac{d y}{d x}\right)=\sqrt{x}\left(\frac{d y}{d x}\right)^{2}+k$.

$$
\therefore 0=1
$$

$$
D=2
$$

(5) $0=2$ for degree, we first remove all fractional powers so squaring on both sides, we get

$$
\begin{aligned}
& \rho^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3} \\
\therefore & \text { Degree }=2
\end{aligned}
$$

(6) $O=3$ \& $D=2$
(7) $0=2 \quad \& \quad D=1$
(8) $O=2 \& D=1$
(9) $O=2 \quad \& \quad D=1$
(10) Find order and degree of $\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}+\left(\frac{d^{3} y}{d x^{3}}\right)^{3 / 2}=0$.
sol: $\quad\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{2}{7} \times 6}+\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2} \times 6}=0 \Rightarrow\left(\frac{d^{3} y}{d x^{3}}\right)^{4}+\left(\frac{d^{3} y}{d x^{3}}\right)^{9}=0$

$$
\therefore \quad 0=3 \text { and } D=9
$$

(11) Find ordue and degree of $\sin \left(\frac{d^{2} y}{d x^{2}}\right)=y-x$ sst:. $0=2$ for degree we expand it as

$$
\left(\frac{d^{2} y}{d x^{2}}\right)-\frac{1}{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\frac{1}{5}\left(\frac{d^{2} y}{d x^{2}}\right)^{5}-==y-x
$$

So degree of above problem does not exists.
Remarte: - The order of diff. Equation always exists but degree may or may not be exists.
(12) Find the order and degree of $\frac{d^{2} y}{d x^{2}}+\iint y d x d x=0$

S51:- It is not diff Eq. So we fret convert it into deft eq. So diff. it two time wo. to x, we get

$$
\frac{\frac{d^{3} y}{d x^{3}}+\int y d x=0}{\frac{d^{4} y}{d x^{4}}+y=0}
$$

(13) Find the ordure of diff Eq . $\frac{d^{2} y}{d x^{2}}+\iint \phi(x) d x d x=0$. Also find degree

Here $\phi(x)=$ is function of x.
SE1: Let us take $\phi(x)=x$. So given Eq becomes

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\iint x d x d x=0 \\
& \frac{d^{2} y}{d x^{2}}+\int \frac{x^{2}}{2} d x=0 \\
& \frac{d^{2} y}{d x^{2}}+\frac{x^{3}}{6}=0 \\
& \text { Ordue }=2 \quad \& \quad \text { degree }=1
\end{aligned}
$$

Linear and Non-linear differential Equation
A differential Equation is said to be linear differential Equation if
(i) dependent variable y and it's various derivatives occurs in the first degree only
(ii) They are not multiplied together and
(iii) not containing the transcendental function of y.

A diff εq. Which is not linear is called Non-linear.
Exp (1) $x^{3} y^{\prime \prime \prime}+\sin x y^{\prime \prime}+e^{x} y=x^{3} e^{x} \quad(L)$
(2) $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=e^{x}$ $(N L)$
(3) $y^{\prime \prime}+y^{\prime}+y=\sin y+e^{y}$ (NL)

Solution of diff Equation:- A solution of diff Eq_{q}. is a relation between dependent variable and independent voribles when it is substituted in the diff ε_{q}. Then diff εq. becomes to identity.
Exp $y=c e^{2 x}$ is the solution of $\frac{d y}{d x}=2 y$, because it is put in the diff Eq. Then diff Eq. becomes to identity.

Types of solutions

General solution
Particular solution.
Def A sol. of diff Eq. is called general solution if no. of arbitrary constants is equal to order of diff Eq.
Exp $y=\frac{A}{x}+B$ is the general solution of $\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}=0$, where A and B are arbitrary constants.
Def (Particular solution):- A particular solution of diff Eq. is that solution Which is obtaineal from general solution by giving particular values of arbitrary constants.
Exp putting $A=2 \& B=3$ then $y=\frac{2}{x}+3$ is the particular sol. of

$$
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}=0 .
$$

Linear differential Equation of $n^{\text {th }}$ order with constant coefficients An Equation of the form

$$
a_{0} \frac{d^{n} y}{d x^{x}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{n-1} \frac{d y}{d x}+a_{n} y=x
$$

Where $a_{0} \neq 0, a_{1}, a_{2} \ldots a_{n-1}, a_{n}$ are constants and x is either constant or function of x only, is called linear diff εq. of $n^{\text {th }}$ order with constant coefficients.
Now, if we put $D \equiv \frac{d}{d x}$, then (1) becomes

$$
\begin{aligned}
& \left(a_{0} D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n}\right) y=x \\
& \text { or } \quad \begin{array}{l}
f(D) y=x \\
\text { where } f(D)
\end{array}=a_{0} D^{n}+a_{1} D^{n-1}+\cdots+a_{n-1} D+a_{n} .
\end{aligned}
$$

Solution of Equation (2) is $y=C \cdot F .+$ PI.
$=$ complementary function + Particular Iulegul

10 find complementary finction … A. E is $f(D)=0$ when $D=m$
L.e. $\quad f(m)=0$

$$
a_{0} m^{n}+a_{1} m^{n-1}+\quad+a_{n 1} m+a_{n}=0
$$

This Equation gires n roots say m_{1}, m_{2},
case.I Whan all roots are real and distinct ie. $m_{1}, m_{2}, \ldots m_{n}$

$$
C \cdot F=c_{1} e^{m_{1} x}-1 c_{2} e^{m_{2} x}+\ldots+c_{n} e^{m_{n} x}
$$

if $m_{1}=m_{2}=m_{3}=m$, then

$$
C_{1} F=\left(c_{1}+x c_{2}+x^{2} c_{3}\right) e^{m_{x}}+c_{4} e^{m_{1} x}+\ldots+c_{n} e^{m_{n} x}
$$

case(I) Let $\alpha=1 i \beta$ pais of complox roote

$$
\frac{\text { C. F }}{}=e^{\alpha x}\left[c_{1} \cos \beta x+c_{2} \sin \beta x\right] \text { or }=c_{1} e^{\alpha x} \cos \left(\beta x+c_{2}\right) \quad \sigma \gamma=c_{1} e^{\alpha x} \sin \left(\beta x+c_{2}\right)
$$

Repeated complex roots $\alpha \pm i \beta, \alpha \pm i \beta$ (twotime)

$$
C \cdot F=e^{\alpha x}\left[\left(c_{1}+x c_{2}\right) \cos \beta x+\left(c_{3}+x c_{4}\right) \sin \beta x\right]
$$

case-(III) Pair of surd or rrational roots ie. $\alpha \pm \sqrt{\beta}$

$$
C \cdot F=e^{\alpha x}\left[4_{1} \cosh \sqrt{\beta} x+c_{2} \sinh \sqrt{\beta} x\right]
$$

que1) Solve $\frac{d^{3} y}{d x^{3}}-7 \frac{d y}{d x}-6 y=0$.
sof: A.E. is $m^{3}-7 m-6=0$
Put $m=1, \quad 1-7-6=-12 \neq 0$
Put $m=-1 \quad-1+7-6=0$
$\therefore(m+1)$ is the factor of the eq (1).

$$
\begin{array}{r}
\therefore m^{2}(m+1)-m(m+1)-6(m+1)=0 \\
(m+1)\left(m^{2}-m-6\right)=0 \\
m+1=0, \quad m^{2}-m-6=0 \\
m^{2}-(3-2) m-6=0 \\
m^{2}-3 m+2 m-6=0 \\
m(m-3)+2(m-3)=0 \\
(m-3)(m+2)=0 \\
\therefore m=-2,3
\end{array}
$$

lIve got $m=-1,-2,3$ (All roots are real and distract)
$c \cdot F=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}$.
PI. $=0$ (Because R.H.S. of given diff εq is zero).
so complete solution is

$$
\begin{aligned}
& y=c \cdot p-1 p \cdot r \\
& y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}
\end{aligned}
$$

Ans

Que 21 Solve the diff Eq $\left(D^{2}+1\right)^{3}\left(D^{2}+D+1\right)^{2} y=0$. whore $D=\frac{d}{d r}$.
SOl:- A.C if $\left(m^{2}+1\right)^{3}\left(m^{2}+m+1\right)^{2}=0$.
C.F. $=e^{0 x}\left[\left(c_{1}+x c_{2}+x^{2} c_{3}\right) \quad\left(\alpha=-\frac{1}{2} \quad \beta \quad \beta=\frac{\sqrt{3}}{2}\right)\right.$

$$
[4+x+6) \sin x]+
$$

$$
e^{-\frac{1}{2} x}\left[\left(c_{7}+x(8) \cos \left(\frac{\sqrt{3}}{2} x\right)+\left(c_{9}+x c_{10}\right) \sin \left(\frac{\sqrt{3}}{2} x\right)\right] .\right.
$$

complete sot is $y=C \cdot F P P \cdot I$.

Que 3) Solve diff Eq. $\frac{d^{2} y}{d x^{2}}+y=0$; given that $y(0)=2$ and $y(\pi / 2)=-2$. Ans $\quad y=2(\cos x-\sin x)$
Que 4) $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x}+12 \frac{d y}{d x}+8 y=0$. under the Condition. $y(0)=0$ $y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=2$.
Any $\quad y=x^{2} e^{-2 x}$

$$
\begin{aligned}
& \left(m^{2}+1\right)^{3} 0 \\
& \text { 4. }\left(m^{2}+m-1\right)^{2}=0 \\
& \left(m^{2}+1\right)\left(m^{2}+1\right)\left(m^{2}+1\right)=0 \\
& m^{2}+1=0 \text {. } \\
& m^{2}=-1 \\
& m=0 \pm i \\
& m=0 \pm i, 0 \pm i, 0 \pm i \\
& =\alpha \operatorname{i\beta } \\
& \text { Le get roots } m=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2},-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} . \\
& \begin{array}{l}
m=0 \pm i, 0 \pm i, 0 \pm i, \quad-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}, \quad-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} . \\
(\gamma=0, \beta=1)
\end{array}
\end{aligned}
$$

To find P.I. we here $f(D) y=x$

$$
\therefore P \cdot I=\frac{1}{f(D)} X
$$

General method of P.I.
If x is the function of x, then

$$
\frac{1}{(D-\alpha)} x=e^{\alpha x} \int x e^{-\alpha x} d x
$$

Remark (1) $\frac{1}{(D+\alpha)} x=e^{-\alpha x} \int x e^{\alpha x} d x$
(2) If $\alpha=0$ then from both cases we have

$$
\frac{1}{D} x=\int x d x
$$

(3) $D \equiv \frac{d}{d x}=$ Differentiation with respect to x
$\frac{1}{D}=$ Integration with respect to x.
(4) If $f(D)=\left(D-\alpha_{1}\right)\left(D-\alpha_{2}\right) \cdots\left(D-\alpha_{n}\right)$.

Thin $\frac{1}{f(D)} x=\frac{1}{\left(D-\alpha_{1}\right)\left(D-\alpha_{2}\right)-\left(D-\alpha_{2}\right)} \quad x$

$$
=\left\{\frac{A}{\left(D-\alpha_{1}\right)}+\frac{A_{2}}{\left(D-\alpha_{2}\right)}+\cdots+\frac{A_{n}}{\left(D-\alpha_{n}\right)}\right\} x
$$

on bracking into partial fractions

$$
\begin{aligned}
& =A_{1} \frac{1}{\left(D-\alpha_{1}\right)} x+A_{2} \frac{1}{\left(D-\alpha_{2}\right)} x+A_{n} \frac{1}{\left(D-\alpha_{n}\right)} x \\
& =A_{1} e^{\alpha_{1} x} \int x e^{-\alpha_{1} x} d x+A_{2} P^{\alpha_{2} x} \int x e^{-\alpha_{2} x} d x+A_{n} e^{\alpha_{1} x} \int x e^{-\ln x} d x
\end{aligned}
$$

(5) The above method will be useful in case finding P.I. of
sec $a x, \operatorname{cosec} a x, \tan a x, \operatorname{cotax}$ and any other forms which are Covered by Short Method.
Que 1 Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$
Sol:- $A E$ is $m^{2}+a^{2}=0$

$$
\begin{align*}
m^{2} & =-a^{2} \\
m & = \pm \sqrt{-a^{2}}= \pm \sqrt{a^{2}} \sqrt{-1}= \pm a i=0 \pm a i \\
m & =0 \pm a i=\alpha \pm i \beta \quad(\alpha=0, \beta=a) . \\
C F & =e^{\alpha x}\left[c_{1} \cos \beta x+c_{2} \sin \beta x\right] \\
& =e^{a x}\left[c_{1} \cos a x+c_{2} \sin a x\right]=c_{1} \cos a x+c_{2} \sin a x \\
P \cdot & =\frac{1}{f(D)} \times \frac{1}{\left(D^{2}+a^{2}\right)} \times \frac{1}{(D+a i)(D-a i)} \times \frac{1}{2 a i}\left[\frac{1}{D-a i}-\frac{1}{D \rightarrow a i}\right] \sec a x \\
& =\frac{1}{(D-a i)} \\
& =\frac{1}{2 a i}\left[\frac{1}{(D+a i)}\right.
\end{align*}
$$

Now

$$
\begin{aligned}
\frac{1}{(D-a i)} \sec a x & =e^{a i x} \int \sec a x \cdot e^{-a i x} d x \\
& =e^{a i x}[\sec a x(\cos a x-i \sin a x) d x \\
& =e^{a i x}[(1-i \tan a x) d x \\
& =e^{a i x[[1 d x-i] \tan a x d x]} \\
& =e^{a i x}\left[x-i \frac{\log \sec a x}{a}\right] \\
& =e^{a i x}\left[x+\frac{i}{a} \log \cos a x\right]
\end{aligned}
$$

Similasly $\frac{1}{D+a i} \sec a x=e^{-a i x}\left[x-\frac{i}{a} \log \cos a x\right]$
By eq (D) we get

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{2 a i}\left[e^{a i x}\left(x+\frac{i}{a} \log \cos a x\right)-e^{-a i x}\left(x-\frac{i}{a} \log \operatorname{los} a x\right)\right] \\
& =\frac{1}{2 a i}\left[\left(e^{a i x}-e^{-a i x}\right) x+\frac{i}{a}\left(e^{a i x}+e^{a i x}\right) \log \cos a x\right] \\
& =\frac{1}{2 a i}\left[x(2 i \sin a x)+\frac{i}{a}(2 \cos a x) \log \cos a x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{7 i}{2 a i}\left[(x \sin a x)+\frac{1}{a} \cos a x \log \cos a x\right] \\
& =\frac{1}{a}\left[x \sin a x+\frac{1}{a} \cos a x \cdot \log \cos a x\right]
\end{aligned}
$$

So general solution or complete solution is $y=C F A P \cdot I$.

$$
y=c_{1} \cos a x+c_{2} \sin a x+\frac{1}{a}\left(x \sin a x+\frac{1}{a} \cos a x \log \cos a x\right) \text {. Arp }
$$

Ques Find the general solution of diff eq $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{e^{2}}$.
SEP. Given Eq. Con be put as $\left(D^{2}+3 D+2\right) y=e^{e^{x}}$
A. I. is $D^{2}+3 D+2=0$ when $D=m$

$$
\begin{array}{ll}
\Rightarrow & m^{2}+3 m-2=0 \\
\Rightarrow & (m+2)(m-1)=0
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad(m+2)(m-1)=0 \\
& \Rightarrow \quad m=-1,-2 . \quad \text { (Roots wire red \& distinct) }
\end{aligned}
$$

$$
\begin{align*}
\therefore C \cdot F & =c_{1} e^{-1 x}+c_{2} e^{-2 x} \\
P \cdot I \cdot & =\frac{1}{\left(D^{2}+3 D+2\right)} e^{e^{x}} \\
& =\frac{1}{(D+1)(D+2)} e^{e^{x}} \\
& =\frac{1}{1}\left[\frac{1}{(D+1)}-\frac{1}{D+2}\right] e^{e^{x}} \\
& =\frac{1}{(D+1)} e^{e^{x}} \tag{1}\\
& =\frac{I_{1}-I_{2}}{}
\end{align*}
$$

Now

$$
\begin{aligned}
I_{1} & =\frac{1}{(D-11)} e^{e^{x}} \\
& =e^{-x} \int e^{e^{x}} e^{+x} d x \\
& =e^{-x}\left[\int e^{t} d t\right] \quad e^{D+\alpha} \\
& =e^{-x}\left[e^{t}\right] \quad e^{x} d x=t \\
& =e^{-x}\left[e^{e^{x}}\right]=e^{-x} e^{x} \\
I_{2} & =\frac{1}{(D+2)} e^{e^{x}}=e^{-2 x} \int e^{e^{x}} e^{2 x} d x
\end{aligned}
$$

Downloaded from : uptukhabar.net

$$
\begin{aligned}
& =e^{-2 x}\left[\left[e^{t} \cdot t \cdot d t\right]\right. \\
& =e^{-2 x}\left[t\left(e^{t}\right)-1\left(e^{t}\right)\right] \\
& =e^{-2 x}\left[(t-1) e^{t}\right] \\
& =e^{-2 x}\left[\left(e^{x}-1\right) e^{e^{x}}\right] \\
& =\left(e^{x} d x=t\right.
\end{aligned}
$$

by eq (1) wee get

$$
\begin{aligned}
\text { (1) wee get } & =e^{-x} e^{e^{x}}-\left(e^{-x}-e^{-2 x}\right) e^{e^{x}} \\
& =\left(e^{-x}-\bar{e}^{-x}+e^{-2 x}\right) e^{e^{x}} \\
& =e^{-2 x} e^{e^{x}}
\end{aligned}
$$

Hence complete solution is $y=$ CF-IP.I

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-2 x} e^{e^{x}}
$$

Que 3) Solve the diff $\varepsilon q \quad \frac{d^{2} y}{d x^{2}}+y=x-\cot x$.
Ans $y=4 \cos x+c_{2} \sin x+x-\sin x \log (\operatorname{cosec} x-\cot x)$

Short Methods for finding P.I. For diff ε. $f(D) y=X, P \cdot I$. is given by
$P \cdot I=\frac{1}{f(D)} X$, where X may be any one of the form $e^{a x}$, $V e^{a x}, \sin (a x+b) \cos (a x+b) x^{m}$ and $V \cdot x$
v.r.d

Remesk:- P.I. by short method is very much shorter than genera Method
(i) when $x=e^{a x}$

$$
\begin{aligned}
& \text { P. }=\frac{1}{f(1)} e^{a r} \\
& \frac{1}{f(1)} e^{a x} ; \quad f(a)=0
\end{aligned}
$$

$$
f(a) 0,11 . e_{n} P \cdot 1=x \frac{1}{f^{\prime}(a)} c^{a x}, \quad f^{\prime}(a) \neq 0
$$

Agana $f^{\prime}(7)+0$, hon

$$
P \cdot s=x^{2} \frac{1}{f^{\prime \prime}(a)} \text { cox; } \quad f^{\prime \prime}(9) \neq 0 .
$$

and loo.

Que 11 Find D, of $\left.\left(45^{2}+4\right),-3\right) y=c^{2 x}$
$-f$.

$$
\begin{aligned}
\text { r.1. }=\frac{1}{\left(1 N^{2}+4 D-x\right)} e^{2+} & =\frac{1}{\left(1 \cdot 2^{2}+4 \cdot 2-3\right)} e^{2 x} \\
& =\frac{1}{21} e^{2 x}
\end{aligned}, \quad D=a=2
$$

(ina) Find Pix of $\left(D^{3}-3 D^{2}-1\right) y=e^{2 x}$
s. 4 !

$$
\begin{aligned}
P \cdot y & =\frac{1}{\left(D^{3}-2 D^{2}-1\right)} e^{2 x} \\
& =x \frac{1}{\left(3 D^{2}-6 D+0\right)} e^{2 x} \\
& =x \cdot x \frac{1}{(6 D-6)} e^{2 x} \\
& =x^{2} \frac{1}{6} e^{2 x}
\end{aligned}
$$

$$
\text { Put } D=2 \text { in }
$$

$$
D^{3}-3 D^{2}-4=8-3 \times 4+4
$$

$$
=0
$$

$$
\text { so Rules is } \frac{f}{D} \text { ail. }
$$

Ages Put $D=$
in $3 D^{2}-6$
Ageun fail
Put $D=2$, in

$$
6 D-6=6 \times 2-6=6
$$

Que 2$)$ Solve the diff. Eq. $\frac{a^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=e^{x}+2$
Sef:-A.E is $m^{3}-3 m^{2}+3 m-1=0$

$$
\begin{aligned}
\quad x^{2} c(r r a n=e & (m-1)^{3}=0 \\
C \cdot F= & \left(C_{1}+x c_{2}-1 x^{2} C_{3}\right) e^{x} \\
P \cdot I \cdot= & 1 \\
(D-1)^{3} & \left(e^{x}+2\right)
\end{aligned}
$$

$$
\begin{equation*}
P \cdot 1=\frac{1}{(D-1)^{3}} e^{x}+\frac{1}{(D-1)^{3}} 2 e^{0 x}=I_{1}+I_{2} \tag{1}
\end{equation*}
$$

$I_{1}=x \frac{1}{3(D-1)^{2}} e^{x}+$ becase Rule is fails

$$
\begin{aligned}
& =x \cdot x \cdot \frac{1}{6(D-1)} e^{x} \quad \text { Again Rules is far ls } \\
& =x \cdot x \cdot x \frac{1}{6} e^{x} \quad \begin{aligned}
& 6 \\
&=\frac{x^{3}}{6} e^{x} \\
& I_{2}=\frac{1}{(D-1)^{3}} 2 e^{0 x} \\
&=2 \frac{1}{(D-1)^{3}} e^{0 x} \quad \text { fut } D=0 \text { in }(D-1)^{3}=\left((1)^{3}\right. \\
&=-2 e^{0}=-2
\end{aligned} \quad=-1
\end{aligned}
$$

By (D) P.I. $=\frac{1}{6} x^{3} e^{x}-2$
complete solution is $y=C F-1 P \cdot I$

$$
y=\left(c_{1}-1 x c_{2}-1 x^{2} c_{3}\right) e^{x}+\frac{1}{6} x^{3} e^{x}-2
$$

Que 4) Solve $\left(b^{2}+p+1\right) y=\left(1+e^{x}\right)^{2}$.
Any $y=e^{-x / 2}\left[c_{1} \cos \left(\frac{\sqrt{3}}{2} x\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2} x\right)\right]+1+\frac{1}{7} e^{2 x}+\frac{2}{3} e^{x}$.
Que 5) Solve $(D+2)(D-1)^{2} y=e^{-2 x}+2 \sinh x$
sol: Hint. $\left\{\begin{array}{l}\sinh x=\frac{e^{x}-e^{-x}}{2} \\ \cosh x=\frac{e^{x}+e^{-x}}{2}\end{array}\right.$
Ans $y=c_{4} e^{-2 x}+\left(c_{2}+c_{3} x\right) e^{x}+\frac{x}{9} e^{-2 x}+\frac{x^{2}}{6} e^{x}+\frac{1}{f} e^{-x}$
Que Solve $y^{\prime \prime}+4 y^{\prime}+13 y=18 e^{-2 x} ;, y(0)=0, y^{\prime}(0)=9$
Ans $y=e^{-2 x}(-2 \cos 3 x+3 \sin 3 x+2)$.
Downloaded from : uptukhabar.net
(ii) When $x=\sin (a x+b)$ or $\cos (a x+b)$

$$
\begin{aligned}
& P \cdot I \cdot=\frac{1}{f(D)} \times \\
&=\frac{1}{f(D)}\{\sin (a x+b) \text { or } \cos (a x+b)\} \\
&=\frac{1}{\phi\left(D^{2}\right)}\{\sin (a x+b) \text { or } \cos (a x+b)\} \\
&=\frac{1}{\phi\left(-a^{2}\right)}\{\sin (a x+b) \text { or } \cos (a x+b)\} \text {. Put } D^{2}=-a^{2} \\
& \text { Provided } \phi\left(-a^{2}\right) \neq 0 .
\end{aligned}
$$

If $\phi\left(-a^{2}\right)=0$. Then Rule is fail. In this case

$$
P \cdot r=x \cdot \frac{1}{\phi^{\prime}\left(-a^{2}\right)}\{\sin (a x+b) \text { or } \cos (a x+b)\} ; \quad \phi^{\prime}\left(-a^{2}\right) \neq 0 .
$$

V.v. Sun t

Well Find P.I. of $\left(D^{2}+a^{2}\right) y=\sin a x$
Sol:

$$
\begin{array}{rlrl}
P \cdot I & =\frac{1}{\left(D^{2}+a^{2}\right)} \sin a x & \\
& =\frac{1}{-a^{2}+a^{2}} \sin a x & D^{2}=-a^{2} \\
& =x \cdot \frac{1}{2 D} \sin a x \\
& =\frac{x}{2} \int \sin a x d x \\
& & \\
& =\frac{x}{2} \cdot\left(\frac{-\cos a x}{a}\right)=-\frac{x}{2 a} \cos a x .
\end{array}
$$

Que) Find P.I. \& C.F of $\left(D^{3}+1\right) y=\sin (2 x+1)$
Sol:- $A E$ is $m^{3}+1=0$

$$
\begin{gathered}
(m+1)\left(m^{2}+m+1\right)=0 \quad\left(\because a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)\right) \\
m=-1, \quad m^{2}-m+1=0 \\
m=\frac{-(-1) \pm \sqrt{(-1)^{2}-4 \times 1 \times 1}}{2 \times 1}=\frac{+1 \pm \sqrt{3} i}{2}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2} \\
\text { cots are } m-1
\end{gathered}
$$

Roots are $m=-1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.

$$
\begin{aligned}
C \cdot F & =c_{1} e^{-x}+e^{\frac{1}{2} x}\left[c_{2} \cos \left(\frac{\sqrt{3}}{2} x\right)+c_{3} \sin \left(\frac{\sqrt{3}}{2} x\right)\right] . \\
P \cdot I \cdot & =\frac{1}{\left(D^{3}+1\right)} \sin (2 x+1) \\
& =\frac{1}{\left(D^{2} \cdot D+1\right)} \sin (2 x+1) \quad \text { Put } D^{2}=-2^{2}=-4 .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(1111)} \sin (2 x+1) \\
& \sin (2 \pi+1) \\
& \text { By Ratimalization so multiplying } \\
& N^{\gamma} \& D^{\gamma} \text { by }(1+Y D) \text {. } \\
& =\frac{1(1140)}{(110)(1140)} \sin (2 x+1) \\
& \text { = } \frac{(1.110)}{1-161^{2}} \cdot \sin (2 x 11) \quad \text { fut } D^{2}=-2^{2}=-4 \\
& =\frac{(1110)}{1-16(-11)} \sin (2 x+1) \\
& =\frac{(1+11)}{65} \cdot \operatorname{Sin}(2 x+1) \\
& =\frac{1}{65}[1 \cdot \sin (2 x-1)-4 D \cdot \sin (2 x+1)] \\
& =\frac{1}{65}[\sin (2 x-1)-4 \cdot \cos (2 x+1) \cdot 2] \\
& =\frac{1}{65}[\sin (2 x-1)+8 \cos (2 x+1)] \text {. }
\end{aligned}
$$

Complete sol, $y=C F-P I$.

$$
\begin{aligned}
y=c_{1} e^{-x}- & e^{\frac{1}{2} x}\left[c_{2} \cos \left(\frac{\sqrt{3}}{2} x\right)+c_{3} \sin \left(\frac{\sqrt{3}}{2} x\right)\right]+ \\
& \frac{1}{65}[\sin (2 x+1)+8 \cos (2 x+1)]
\end{aligned}
$$

Qu13) Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-2 y=e^{x}+\cos x$

Ans: $y=c_{1} e^{x}+e^{x}\left(c_{2} \cos x+c_{3} \sin x\right)+x e^{x}+\frac{1}{10}(3 \sin x+\cos x)$.
(Que 4-) Solve $\left(D^{2}-14\right) y=\cos ^{2} x$.
Hint Write $\cos ^{2} x=\left(\frac{1+\cos 2 x}{2}\right)$,

Ans $\quad y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{8}(1+x \sin 2 x)$

Ques Solve $\left(D^{2}-4 D+1\right) y=\cos x \cos 2 x+\sin ^{2} x$
Sol:A.E. is $m^{2}-4 m+1=0$

$$
\begin{aligned}
& \Rightarrow m=\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3} \\
& C \cdot F=e^{2 x}\left[c_{1} \cosh \sqrt{3} x-1 c_{2} \sinh (\sqrt{3} x)\right] \\
& P \cdot r=\frac{1}{\left(D^{2}-4 D+1\right)}\left(\cos x \cos 2 x+\sin ^{2} x\right) \\
& =\frac{1}{\left(D^{2}-4 D+1\right)} \frac{1}{2} 2 \cos x \cos 2 x+\frac{1}{\left(D^{2}-4 D+1\right)} \sin ^{2} x \\
& =\frac{1}{2}\left(D^{2}-4 D-11\right)(\cos 3 x+\cos x)+\frac{1}{\left(D^{2}-4 D+1\right)}\left(\frac{1-\cos 2 x}{2}\right) \\
& =\frac{1}{2} \frac{1}{\left(D^{2}-4 D+1\right)} \cos 3 x+\frac{1}{2\left(D^{2}-4 D+1\right)} \cos x+\frac{1}{2} \frac{1}{\left(D^{2}-4 D+1\right)}-\frac{1}{2\left(D^{2}-4 D+1\right)} \cos 2 x \\
& P \cdot I=P_{1}+P_{2}+P_{3}+P_{4} \text {. (1) (1) (1) (1) } \\
& P_{1}=\frac{1}{2} \frac{1}{\left(D^{2}-4 D+1\right)} \cos 3 x \\
& \begin{array}{l}
=\frac{1}{2} \frac{1}{(-9-4 D+1)} \cos 3 x \\
=\frac{1}{2} \frac{1}{(-4 D-8)} \cos 3 x
\end{array} \\
& \begin{array}{l}
=-\frac{1}{8} \frac{1}{(D+2)} \cos 3 x \\
=-\frac{1}{8} \frac{(D-2)}{(D+2)(D-2)} \cos 3 x
\end{array} \\
& =-L_{8} \frac{(D-2)}{\left(D^{2}-4\right)} \cos 3 x \\
& =-\frac{1}{8} \frac{(D-2)}{(-9-4)} \cos 3 x \\
& =\frac{1}{104}(-3 \sin 3 x-2 \cos 3 x) \\
& P_{2}=\frac{1}{2\left(D^{2}-4 D+1\right)} \cos x \\
& D^{2}=-1^{2}=-1 \\
& =\frac{1}{2(-7-4 D+t)} \cos 2 \\
& =-\frac{1}{8} \frac{1}{D} \cos x \\
& =-\frac{1}{8} \int \cos x d x \\
& =-\frac{1}{8} \sin x \\
& P_{3}=\frac{1}{2} \frac{1}{\left(D^{2}-4 D+1\right)} \cdot 1 \\
& =L_{2} \frac{1}{\left(D^{2}-4 D+i\right)} \cdot e^{0 x} \quad D=0 \\
& \ldots=\frac{L_{2}}{2} \frac{1}{1} e^{0}=\frac{1}{2} \\
& P_{3}=-\frac{1}{2\left(D^{2}-4 D+1\right)} \cos 2 x=\frac{1}{-2(-4-4 D+1)} \cos 2 x=\frac{1}{2(4 D+3)} \cos 2 x \\
& =\frac{1}{2(4 D+3)} \frac{(4 D-3)}{(4 D-3)} \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \frac{14 D-3)}{\left(16 D^{2}-9\right)} \cos 2 x \\
& =\frac{1}{2} \frac{(4 D-3)}{16(-4)-9} \cos 2 x \\
& =\frac{1}{2} \frac{(4 D-3)}{-73} \cos 2 x
\end{aligned}=\frac{1}{-146}(-8 \sin 2 x-3 \cos 2 x) .
$$

\therefore By Eq (1). P.I. $=-\frac{1}{104}(3 \sin 3 x+2 \cos 3 x)+\frac{1}{8} \sin x+\frac{1}{2}+$

$$
\frac{1}{146}(8 \sin 2 x+3 \cos 2 x)
$$

Complete solution $\quad y=C F-1 P \cdot I$.

$$
\begin{array}{r}
y=e^{2 x}\left(c_{1} \cosh \sqrt{3} x+c_{2} \sinh \sqrt{3} x\right)-\frac{1}{104}(3 \sin 3 x+2 \cos 3 x) \\
-\frac{1}{8} \sin x+\frac{1}{2}+\frac{1}{146}(8 \sin 2 x+3 \cos 2 x) .
\end{array}
$$

QM46) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+10 y+37 \sin 3 x=0$ and find the
Value of y when $x=\pi / 2$ being given that $y=3, \frac{d y}{d x}=0$ when $x=0$.
SE:- we have $\left(D^{2}+2 D+10\right) y=-37 \sin 3 x$.
AE. I. $m^{2}+2 m+10=0 \Rightarrow m=-1 \pm 3 i, \quad C \cdot F=e^{-x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)$ $P \cdot I .=\frac{1}{\left(D^{2}+2 D+10\right)}(-37 \sin 3 x)=6 \cos 3 x-\sin 3 x$.
complete sol $y=C F+P \cdot C$

$$
\begin{equation*}
y=e^{-x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+6 \cos 3 x-\sin 3 x \tag{1}
\end{equation*}
$$

From $y(0)=3 \Rightarrow c_{1}=-3$
Again $\frac{d y}{d x}=e^{-x}\left(-3 c_{1} \sin 3 x+c_{2} 3 \cos 3 x\right)-e^{-x}\left(4 \cos 3 x+c_{2} \sin 3 x\right)$

$$
+6(-3) \sin 3 x-3 \cos 3 x
$$

From $\frac{d y}{d x}=0$ when $x=0$.

$$
\Rightarrow \quad C_{2}=0
$$

fit these values in eq (1), we get $y=\left(6-3 e^{-x}\right) \cos 3 x-2 \sin 3 x$
When $x=\frac{\pi}{2}$, we get $y=-\sin \frac{3 \pi}{2}=-(-1)=1$. Ane

Cax-III when $x=x^{m} ; \quad m \in N$

$$
\begin{aligned}
& P \cdot I=\frac{1}{f(D)} x^{m} ; \text { Take } \\
& \text { ad using the Binomial Expansions } \\
& (1+x)^{-1}=1-x+x^{2}+x^{3}+\cdots \infty \\
& (1-x)^{-1}=1+x+x^{2}+x^{3}+\cdots \infty .
\end{aligned}
$$

Quell) Find P.I. of $\left(D^{2}+5 D+4\right) y=\left(x^{2}+7 x+9\right)$.
SoP:-

$$
\begin{aligned}
& P \cdot I=\frac{1}{\left(D^{2}+5 D+4\right)}\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4\left[1+\frac{1}{4}\left(D^{2}+5 D\right)\right]}\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4}\left[1+\frac{1}{4}\left(D^{2}+5 D\right)\right]^{-1}\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4}\left[1-\frac{1}{4}\left(D^{2}+5 D\right)+\frac{1}{16}\left(D^{2}+5 D\right)^{2}+\cdots\right]\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4}\left[1-\frac{1}{4}\left(D^{2}+5 D\right)+\frac{1}{16}\left(D^{4}+25 D^{2}+10 D^{3}\right)\right]\left(x^{2}+7 x+5\right) \\
& =\frac{1}{4}\left[1-\frac{1}{4}\left(D^{2}+5 D\right)+\frac{D^{4}}{16}+25 \frac{D^{2}}{16}+\frac{10}{16} D^{3}\right]\left(x^{2}+7 x+9\right) \\
& \text { Because they hairy degree } \\
& \text { mare than } 2 . \\
& =\frac{1}{4}\left[1-\frac{1}{4} D^{2}-\frac{5}{4} D+\frac{25}{16} D^{2}\right]\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4}\left[1-\frac{5}{4} D+\frac{21}{16} D^{2}\right]\left(x^{2}+7 x+9\right) \\
& =\frac{1}{4}\left[\left(x^{2}+7 x+9\right)-\frac{5}{4} \pm\left(x^{2}+7 x+9\right)+\frac{21}{16} D^{2}\left(x^{2}+7 x+9\right)\right] \\
& =\frac{1}{4}\left[\left(x^{2}+7 x+9\right)-\frac{5}{4}(2 x+7)+\frac{21}{16}(2)\right]=\frac{L}{4}\left(x^{2}+\frac{5}{2} x+\frac{23}{8}\right) \text {. }
\end{aligned}
$$

Que 2) Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin x+x^{2}\right)$.
Ans $y=\left(c_{1}+x c_{2}\right) e^{2 x}+4 x^{2} e^{2 x}+\cos 2 x+2 x^{2}+4 x+3$,
cax-IV When $X=V \cdot c^{a x} ; V=$ any function of x

$$
\begin{aligned}
P \cdot I & =\frac{1}{f(D)} V \cdot e^{a x} \\
& =e^{a x} \frac{1}{f(D+a)} V
\end{aligned}
$$

Que 1) Obtain general solution of $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-12 y=(0-1) e^{2 x}$
Sole- AE. is $\left(m^{2}+4 m-12\right)=0$

$$
\begin{aligned}
& \Rightarrow(m-2)(m+6)=0 \\
\text { P.I. } & =\frac{1}{\left(D^{2}+4 D-12\right)}(x-1) e^{2 x} \\
= & e^{2 x} \frac{1}{(D+2)^{2}+4(D+2)-12}(x-1) \\
= & e^{2 x} \frac{1}{D^{2}+4+4 D+4 D+8-12}(x-1) \\
= & e^{2 x} \frac{1}{\left(D^{2}+8 D\right)}(x-1) \\
& =e^{2 x} \frac{1}{8 D\left[1+\frac{D}{8}\right]}(x-1) \\
& =e^{2 x} \frac{1}{8} \frac{1}{D}\left[1+\frac{D}{8}\right]^{-1}(x-1) \\
& =\frac{e^{2 x}}{8} \frac{1}{D}\left[1-\frac{D}{8}\right](x-1) \\
& =\frac{e^{2 x}}{8} \frac{1}{D}\left[(x-1)-\frac{1}{8} D(x-1)\right] \\
& \left.=\frac{e^{2 x}}{8} \frac{1}{D}[1 x-1)-\frac{1}{8}\right]=\frac{e^{2 x}}{8} \frac{1}{D}\left(x-\frac{9}{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{2 x}}{8} \int\left(x-\frac{9}{8}\right) d x \\
& =\frac{e^{2 x}}{8}\left[\frac{x^{2}}{2}-\frac{9}{8} x\right]
\end{aligned}
$$

complete solution is $\quad y=$ CF-IP.I.

$$
y=c_{1} e^{2 x}+c_{2} e^{-6 x}+e^{2 x}\left(\frac{x^{2}}{16}-\frac{9 x}{64}\right) \cdot \text { Ane }
$$

Que 2) Solve $\left(D^{2}-2 D+1\right) y=x e^{x} \cos x$
Ans $y=\left(c_{1}+c_{2} x\right) e^{x}+e^{x}(-x \cos x+2 \sin x)$.
vul 3) Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.
Sol:- $A \in$ is $m^{2}-4 m+4=0$

$$
\begin{aligned}
& \Rightarrow \Rightarrow(m-2)^{2}=0 \\
& C \cdot F=\left(c_{1}+x c_{2}\right) e^{2 x} \\
& P \cdot r \cdot=\frac{1}{(D-2)^{2}} 8(m-2)=0 \Rightarrow x^{2} e^{2 x} \sin 2 x \\
&= 8 \frac{1}{(D-2)^{2}} e^{2 x}\left(x^{2}-\sin 2 x\right) \\
&= 8 \cdot e^{2 x} \frac{1}{(D+2-2)^{2}} x^{2} \sin 2 x \\
&=8 e^{2 x} \frac{1}{D^{2}} x^{2} \sin 2 x \\
&=8 e^{2 x} \iint x^{2} \sin 2 x d x d x \\
&=8 e^{2 x} \int\left[x^{2}\left(-\frac{\cos 2 x}{2}\right)-(2 x)\left(-\frac{\sin 2 x}{4}\right)+2\left(\frac{\cos 2 x}{8}\right)\right] d x \\
&=8 e^{2 x} \int\left[-\frac{1}{2} x^{2} \cos 2 x+\frac{x}{2} \sin 2 x+\frac{1}{4} \cos 2 x\right] d x \\
&=8 e^{2 x}\left[-\frac{1}{2} \int x^{2} \cos 2 x+\frac{1}{2} \int x \sin 2 x d x+\frac{1}{4} \int \cos 2 x d x\right) \\
&=8 e^{2 x}\left[-\frac{1}{2}\left[e^{2}\left(\frac{\sin 2 x}{2}\right)-(2 x)\left(\frac{-\cos 2 x}{4}\right)+2\left(\frac{\sin 2 x}{8}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{2}\left\{x\left(\frac{-\cos 2 x}{2}\right)-1\left(-\frac{\sin 2 x}{4}\right)\right\}+\frac{1}{4}\left(\frac{\sin 2 x}{2}\right)\right] \\
& =8 e^{2 x}\left[-\frac{1}{4} x^{2} \sin 2 x+\frac{1}{4} x \cos 2 x+\frac{1}{8} \sin 2 x+\frac{1}{4} x \cos \right. \\
& \left.+\frac{1}{8} \sin 2 x+\frac{1}{8} \sin 2 x\right] \\
& =8 e^{2 x}\left[\left(-\frac{1}{4} x^{2}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right) \sin 2 x-\frac{1}{2} x \cos 2 x\right] \\
& =8 e^{2 x}\left[\left(\frac{3}{8}-\frac{x^{2}}{4}\right) \sin 2 x-\frac{1}{2} x \cos 2 x\right] \\
& =e^{2 x}\left[\left(3-2 x^{2}\right) \sin 2 x-4 x \cos 2 x\right] .
\end{aligned}
$$

Hence complete sot is

$$
\begin{gathered}
y=c F+p \cdot r \\
y=\left(4+x c_{2}\right) e^{2 x}+e^{2 x}\left[\left(3-2 x^{2}\right) \sin 2 x-4 x \cos 2 x\right] .
\end{gathered}
$$

NH
Remark: To find P.I. $=\frac{1}{f(D)} \times V$

$$
=\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{1}{f(D)} \cdot V
$$

Que solve $\left(D^{2}+2 D+1\right) y=x \cos x$
SI: AFAR $m^{2}+2 m+1=0 \Rightarrow(m+1)^{2}=0 \Rightarrow m=-1,-1$.

$$
\begin{aligned}
& \therefore C F=\left(C_{1}+x C_{2}\right) e^{-x} \\
& P \cdot I \cdot=\frac{1}{\left(D^{2}+2 D+1\right)} x \cos x=\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{1}{f(D)} \cos x \\
&= {\left[x-\frac{2 D+2}{\left(D^{2}+2 D+1\right)}\right] \frac{1}{\left(D^{2}+2 D+1\right)} \cos x } \\
&= {\left[x-\frac{2(D+1)}{(D+1)^{2}}\right] \frac{1}{\left(D^{2}+1\right)^{2}} \cos x } \\
&=\left.x-\frac{2}{(D+1)}\right] \frac{1}{\left(D^{2}+2 D+1\right)} \cos x
\end{aligned}
$$

$$
\begin{aligned}
& =x \frac{1}{\left(D^{2}+2 D-1\right)} \cos x-\frac{2}{\left(D^{2}+2 D+1\right)(D+1)} \cos x \\
& =x \frac{1}{\left(-1^{2}+2 D+1\right)} \cos x-\frac{2}{\left(-D^{2}+2 D+1\right)(D+1)} \cos x \\
& =\frac{x}{2} \int \cos x d x-2 \frac{1}{2 D(D+1)} \cos x \\
& =\frac{x}{2} \sin x-\frac{1}{\left(D^{2}+D\right)} \cos x \\
& =\frac{x}{2} \sin x-\frac{1}{(D-1)(D+1)} \cos x \\
& =\frac{x}{2} \sin x-\frac{1(D+1)}{\left(D^{2}-1\right)} \cos x \\
& =\frac{x}{2} \sin x-\frac{(D-1)}{(-12} \cos x \\
& =\frac{x}{2} \sin x+\frac{1}{2}(D+1) \cos x \\
& =\frac{x}{2} \sin x+\frac{1}{2}[-\sin x+\cos x] \\
& =\left(\frac{x}{2}-\frac{1}{2}\right) \sin x+\frac{1}{2} \cos x .
\end{aligned}
$$

complete sol. $y=C F+P \cdot L=\left(c_{1}+x c_{2}\right) e^{-x}+\frac{1}{2}(x-1) \sin x+\frac{1}{2} \cos x$.

Cauchy's Euler Equations or Homogeneous linear diff. Eq. with variable coefficients or Equation Reducible to linear diff. Eq with constant coefficients

An εq. of the form

$$
\begin{equation*}
a_{0} x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{n-1} x \frac{d y}{d x}+a_{n} y=x \tag{1}
\end{equation*}
$$

or $\quad\left(a_{0} x^{n} D^{n}+a_{1} x^{n-1} D^{n-1}+\cdots+a_{n-1} x D+a_{n}\right) y=x$
Where $a_{0}, a_{1} \ldots a_{n}$ are constants and x is either constant or function of x, is called homogeneous linear diff εq or

Cauchy:- Euler Equation.
Working Rule for finding solution of above Eq
Take $x=e^{z}$ or $z=\log x$, then

$$
x \frac{d y}{d x}=D_{1} y ; \text { where } D_{1} \equiv \frac{d}{d z}
$$

Similarly $x^{2} \frac{d^{2} y}{d x^{2}}=D_{1}\left(D_{1}-1\right) y$

$$
x^{3} \frac{d^{3} y}{d x^{3}}=D_{1}\left(D_{1}-1\right)\left(D_{1}-2\right) y \text { and so on. }
$$

Que Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\lambda^{2} y=0$
Sol 2 Given Equation is cauchy. Euler Equation so we put

$$
x=e^{z} \text { or } z=\log x \text { and }
$$

$x \frac{d y}{d x}=D_{1} y$, where $D_{1} \equiv \frac{d}{d z}$
$x^{2} \frac{d^{2} y}{d x x^{2}}=D_{1}\left(D_{1}-1\right) y$,
So Equation (1) becomes

$$
\begin{aligned}
& {\left[D_{1}\left(D_{1}-1\right)+D_{1}-\lambda^{2}\right] y=0} \\
& {\left[D_{1}^{2}-D_{1}+D_{1}-\lambda^{2}\right] y=0}
\end{aligned}
$$

Downloaded from : uptukhabar.net
$\Rightarrow \quad\left(D_{1}^{2}-\lambda^{2}\right) \times y=0$; which is L.D. Eq. With constant coff.
So A.E. is $\quad m^{2}=\lambda^{2}=0$

$$
\begin{aligned}
& \Rightarrow(m-\lambda)(m+\lambda)=0 \\
& \Rightarrow m=\lambda,-\lambda \\
\therefore \quad C \cdot F & =c_{1} e^{\lambda z}+c_{2} e^{-\lambda z} \\
P \cdot I_{1} & =0 .
\end{aligned}
$$

complete sol. is $y=$ C.F-1P.I.

$$
\begin{aligned}
& y=c_{1} e^{\lambda z}+c_{2} e^{-\lambda z}+0 \\
& y=c_{1}\left(e^{z}\right)^{\lambda}+c_{2}\left(e^{+z}\right)^{-\lambda} \\
& y=c_{1} x^{\lambda}+c_{2} x^{-\lambda}
\end{aligned}
$$

Ans
Que 2) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$.
Sol:- Given Eq (1) is Cauchy. Euler Equation so we put

$$
x=e^{z} \text { or } z=\log x \text { and }
$$

$x \frac{d y}{d x}=D_{1} y$; where $D_{1} \equiv \frac{d}{d z}$.

$$
x^{2} \frac{d^{2} y}{d x^{2}}=D_{1}\left(D_{1}-1\right) y
$$

Put in (D), we get $\left[D_{1}\left(D_{1}-1\right)+4 D_{1}+2\right] y=e^{e^{z}}$

$$
\begin{aligned}
& \Rightarrow \quad\left[D_{1}^{2}-D_{1}+4 D_{1}+2\right] y=e^{e^{2}} \\
& \Rightarrow \quad\left(D_{1}^{2}+3 D_{1}+2\right) y=e^{e^{2}}
\end{aligned}
$$

$A E$ is $m^{2}+3 m+2=0$

$$
\begin{gathered}
\quad(m+1)(m+2)=0 \\
C F=c_{1} e^{-z}+c_{2} e^{-2 z} \\
P \cdot I_{1}=\frac{1}{\left(D_{1}+1\right)\left(D_{1}+2\right)} e^{e^{z}}=\left(\frac{1}{D_{1}+1}-\frac{1}{D_{1}+2}\right) e^{e^{z}}
\end{gathered}
$$

$$
\begin{align*}
& =\frac{1}{\left(D_{1}+1\right)} e^{e^{z}}-\frac{1}{\left(D_{1}+2\right)} e^{e^{z}} \\
& =I_{1}+I_{2} \tag{2}\\
I_{1} & =\frac{1}{\left(D_{1}+1\right)} e^{e^{z}}= \\
& =e^{-z} \int e^{e^{z}} \cdot e^{z} d z \quad \text { let } e^{z}=t \\
& =e^{-z} \int e^{t} d t \\
& =e^{-2}\left(e^{t}\right)=e^{\alpha x} \int x e^{-} \\
I_{2} & =\frac{1}{\left(D_{1}+2\right)} e^{e^{z}}=\left(e^{e^{z}}\right) \quad e^{-2 z} \int e^{e^{z}} \cdot e^{2 z} d z \\
& =e^{-2 z} \int e^{t} \cdot t \cdot d t \\
& =e^{-2 z}\left[e^{t}(t-1)\right] \\
& =e^{-2 z}\left[e^{e^{z}}\left(e^{z}-1\right)\right. \\
& =e^{e^{z}}\left(e^{-z}-e^{-2 z}\right) \\
\therefore P \cdot \mathbb{C} & =e^{-z} e^{e^{z}}-e^{e^{z}}\left(e^{-z}-e^{-2 z}\right) \\
& =e^{e^{z}}\left(e^{e^{2}}-e^{-k}+e^{-2 z}\right)=e^{-2 z} \cdot e^{e^{z}} .
\end{align*}
$$

complete sol is $y=C F P \cdot C$.

$$
\begin{aligned}
y & =c_{1} e^{-2}+c_{2} e^{-2}+e^{-22} e^{e^{2}} \\
& =c_{1} x^{-1}+c_{2} x^{-2}+x^{-2} e^{x} \\
y & =\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+\frac{e^{x}}{x^{2}}
\end{aligned}
$$

An
Que solve $\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+1\right) y=x+\log x$.

Ans $y=c_{1} x^{-1}+x^{\frac{1}{2}}\left[c_{2} \cos \left(\frac{\sqrt{3}}{2} \log x\right)+c_{3} \sin \left(\frac{\sqrt{3}}{2} \log x S\right]+\frac{1}{2} x+\log x\right.$
Simultaneous linear differential Equations
Differential Equation in which two or more dependent Variables are function of single independent variable, are called simultaneous diff. Equations.
Exp suppose x ry are two dependent variables and t be the independent variable. Then

$$
\left.\begin{array}{l}
f_{1}(D) x+f_{2}(D) y=f(t) \\
g_{1}(D) x+g_{2}(D) y=g(x)
\end{array}\right\}
$$

where $D \equiv \frac{d}{d t}$, are simultaneous diff Equations.
Quell Solve $\frac{d x}{d t}+\omega y=0$ and $\frac{d y}{d t}-w x=0$. Also show that the points (x, y) lies on a circle.
S.5:- Let $D \equiv \frac{d}{d t}$. Then given Equations can be put as

$$
\begin{array}{r}
D x+\omega y=0 \\
-\omega x+D y=0 \tag{2}
\end{array}
$$

For eliminating y from (1) and (2), Multiplying (1) by D and (2) by ω and subtracting, we set

$$
\begin{aligned}
D^{2} x+\omega D y & =0 \times D \\
-\omega^{2} x+\omega D y & =0 \times \omega
\end{aligned}
$$

Subtract $\quad\left(D^{2}+\omega^{2}\right) x=0$
A.E. is $\quad m^{2}+\omega^{2}=0$

$$
\begin{gather*}
m^{2}=-\omega^{2} \\
m= \pm i \omega=0 \pm i \omega \\
x=e^{o t}\left[c_{1} \cos \omega t+c \sin \omega t\right] \\
x=c_{1} \cos \omega t+c \sin \omega t \tag{3}
\end{gather*}
$$

By eq (1), $\quad \omega y=-\Delta x \Rightarrow y=-\frac{1}{\omega} D x$

$$
\begin{aligned}
& y=-\frac{1}{\omega}\left[c_{1}(--\sin \omega 1) \omega+5 \omega \cos \omega t\right] \\
& y=c \sin \omega t+c \cos \omega t
\end{aligned}
$$

Thus Equations (3) and G together give the required solution of given simultaneous Equations.
$2^{\text {nd }}$ part:- we get

$$
\begin{aligned}
& x=c_{1} \cos \omega t+c_{2} \sin \omega t \\
& y=c_{1} \sin \omega t+c_{2} \cos \omega t
\end{aligned}
$$

For eliminating l, squaring and adding both sides, we set

$$
\begin{aligned}
x^{2}+y^{2} & =\left(c_{1} \cos \omega t+c_{2} \sin \omega t\right)^{2}+\left(c_{1} \sin \omega t-c_{2} \cos \omega t\right)^{2} \\
& =c_{1}^{2} \cos ^{2} \omega t+c_{2}^{2} \sin ^{2} \omega t+2 c_{1} c_{2} \sin t \operatorname{tas} \omega t+ \\
& c_{1}^{2} \sin ^{2} \omega t+c_{2}^{2} \cos ^{2} \omega t-2 c_{1} c^{2} \sin \omega+\cos \omega t \\
& =c_{1}^{2}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right)+c_{2}^{2}\left(\sin ^{2} \omega t+\cos ^{2} \omega t\right) \\
x^{2}+y^{2} & =c_{1}^{2}+c_{2}^{2} \\
& x^{2}+y^{2}=\left(\sqrt{c_{1}^{2}+c_{2}^{2}}\right)^{2} \quad a^{2} \quad \text { Tace } \quad a=\sqrt{c^{2}+c_{2}^{2}}
\end{aligned}
$$

Which is the equation of circle. Thus the point (x, y) lies on circle.

Que 2) Solve the following simultaneous diff Equation::

$$
\begin{aligned}
& \frac{d x}{d t}+5 x-2 y=t \\
& \frac{d y}{d t}+2 x+y=0
\end{aligned}
$$

given that $x=0=y$ when $t=0$.
Sol:- Let $\frac{d}{d t} \equiv D$, so given Equations com be put as

$$
\begin{align*}
& (1+5) x-2 y=+ \\
& 2 x+(1+1) y=0
\end{align*}
$$

For eliminating y, multiplying $\varepsilon_{q}(D)$ by $(D+1)$ and (2) by 2 and

Adding

$$
\begin{gathered}
(D+1)(D+5) x-(0+1) 2 y=(D+1) t \\
2 \cdot 2 x+2(D+1) y=2 \cdot 0
\end{gathered}
$$

Addricy $[(D+1)(D+5)+4] x=(D+1)++0$

$$
\begin{align*}
& \left(D^{2}+5 D+D+5+4\right) x=(D+t) \tag{d}\\
& \left(D^{2}+6 D+9\right) x=(1+t)
\end{align*}
$$

$A-E$ is $\quad m^{2}+6 m+9=0$

$$
\begin{aligned}
& (m+3)^{2}=0 \\
\Rightarrow & (m+3)(m+3)=0 \\
\Rightarrow & (m=-3,-3 \\
C \cdot & \left(C_{1}+t C_{2}\right) e^{-3 t} \\
P \cdot I= & \frac{1}{\left(D^{2}+6 D+9\right)}(1+t) \\
= & \frac{1}{9}\left[1+\left(\frac{D^{2}+6 D}{9}\right)\right](1+t) \\
= & \frac{1}{9}\left[2+\left(\frac{D^{2}+6 D}{9}\right)\right]^{-1}(1+t) \\
= & \frac{1}{9}\left[1-\left(\frac{D^{2}+6 D}{9}\right)\right](1+t) \\
= & \frac{1}{9}\left[(1+t)-\frac{6}{9} D(1+t)-\frac{D^{2}}{9}\right] \\
= & \frac{1}{9}\left[(1+t)-\frac{6}{9}(1)\right]=1-x+x^{2}=1
\end{aligned}
$$

Solution of Eq (3) is

$$
\begin{align*}
& x=C \cdot F \rightarrow P \cdot \sigma \\
& x=\left(C_{1}+t C_{2}\right) e^{-3 t}+\frac{1}{5}(t+1 / 3) \tag{4}
\end{align*}
$$

From $\varepsilon_{q}(1) \quad 2 y=(D+5) x-t$

$$
=D x+5 x-t
$$

$$
\begin{align*}
& 2 y=D\left\{\left(c_{1}+t c_{2}\right) e^{-3 t}+\frac{1}{9}(t+1 / 3)\right\}+5\left(c_{1}+t c_{2}\right) e^{-3 t}+\frac{5}{9}(t+1 / 3)-t\left(c_{1}+t c_{2}\right)\left(-3 e^{-3 t}\right)+e^{-3 t}\left(c_{2}\right)+\frac{1}{9}+5\left(c_{1}+t c_{2}\right) e^{3 t}+ \\
& 2 y=\left(\frac{5}{9}\left(t+t_{3}\right)-t\right. \\
& 2 y=2\left(c_{1}+t c_{2}\right) e^{-3 t}+e^{-3 t} c_{2}-\frac{4}{9 t}+\frac{8}{27} \\
& y=\left(c_{1}+t c_{2}\right) e^{-3 t}+\frac{c_{2}}{2} e^{-3 t}-\frac{2}{9 t}+\frac{4}{27}
\end{align*}
$$

Equations (5) and (6), together gere the general solution.
Again $x=0$ when $t=0$ ie

$$
\begin{gathered}
x(0)=0 \\
\Rightarrow \quad\left(c_{1}+c_{2} \times 0\right) e^{-0}+\frac{1}{5}(0+1 / 3)=0 \quad(\text { Fran eq (4) }) \\
\Rightarrow \quad c_{1}=-\frac{1}{27}
\end{gathered}
$$

Again from $y=0$ when $t=0$ ie $y(0)=0$

$$
\begin{align*}
\Rightarrow & \left(c_{1}+0\right) e^{-0}+\frac{c_{2}}{2} e^{-0}-\frac{2}{9} \times 0+\frac{4}{27}=0 \quad \text { (Fran act (S)) } \tag{Fran}\\
\Rightarrow & c_{1}+\frac{c_{2}}{2}=-\frac{4}{27} \\
& \frac{c_{2}}{2}=-\frac{4}{27}+\frac{L}{27}=-\frac{3}{27}=-\frac{1}{9} \\
& \\
& \quad \frac{c_{2}}{2}=-\frac{2}{9}
\end{align*}
$$

Hence put these Values in eq (4) and (S), we get
required Particular Solutions

$$
x=-\frac{1}{27}(1+6 t) e^{3 t}+\frac{1}{9}(t+1 / 3)
$$

and $\quad y=-\frac{2}{27}(x+3 t) e^{-3 t}+\frac{2}{9} t+\frac{4}{27} \quad$ Ans
Que 3 Solve $\frac{d^{2} x}{d t^{2}}+\frac{d y}{d t}+3 x=e^{-t}$ and

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d x}{d t}+3 y=\sin 2 t
$$

SET.
Lat $D \equiv \frac{d}{d t}$. Then given equations can be put as

$$
\begin{align*}
& \left(D^{2}+3\right) x+D y=4 e^{-t} \tag{1}\\
& -4 D x+\left(D^{2}+3\right) y=\sin 2 t
\end{align*}
$$

Now multiplying ε_{q} (D) by $\left(D^{2}+3\right)$ and (2) by D. Then subtracting we get

$$
\begin{align*}
& \left(D^{2}+3\right)^{2} x+D\left(D^{2}+3\right) y=\left(D^{2}+3\right) e^{-t} \\
& {\left[4 D^{2} x+\left(D^{2}+2\right) D y=D \sin 2 t\right.} \\
& {\left[\left(D^{2}+3\right)^{2}+4 D^{2}\right] x=\left(D^{2}+3\right) e^{t}-D \sin 2 t} \\
& {\left[D^{4}+9+6 D^{2}-4 D^{2}\right] x=4 e^{-t}+4 \cos 2 t} \\
& \left(D^{4}+10 D^{2}+9\right) x=4 e^{-t}-2 \cos 2 t \tag{3}
\end{align*}
$$

$A E$ is

$$
\begin{array}{ll}
\text { is } & m^{4}+10 m^{2}+9=0 \\
& \left(m^{2}+1\right)\left(m^{2}+9\right)=0 \\
\Rightarrow & m^{2}+1=0+m^{2}=-9 \\
\Rightarrow & m= \pm i, \pm 3 i
\end{array}
$$

$$
\begin{aligned}
C \cdot F & =e^{0 t}\left[c_{1} \cos t+c_{2} \sin t\right]+e^{0 t}\left[c_{3} \cos 3 t+c_{4} \sin 3 t\right] \\
C \cdot F \cdot & =c_{1} \cos t+c_{2} \sin t+c_{3} \cos 3 t+c_{4} \sin 3 t \\
P \cdot I_{1} & =\frac{1}{\left(D^{4}+10 D^{2}+9\right)}\left(4 e^{-t}-2 \cos 2 t\right) \\
& =\frac{1}{\left(D^{4}+10 D^{2}+9\right)} 4 e^{-t}-\frac{1}{\left(D^{4}+10 D^{2}+9\right)}(2 \cos 2 t) \\
& =4 \frac{1}{(1+10+9)} e^{-t}-2 \frac{1}{-2^{2}-2^{2}+10\left(-2^{2}\right)+9} \cos 2 t \\
& =\frac{4}{20} e^{-t}+\frac{2}{15} \cos 2 t=\frac{1}{5} e^{-t}+\frac{2}{15} \cos 2 t
\end{aligned}
$$

complect sol of (3) is $x=C F+P \cdot I$

$$
\begin{align*}
x=\left(c_{1} \cos t+c \sin t\right)+\left(c_{3} \cos 3 t\right. & \left.+c_{4} \sin 3^{t}\right)+t_{5} e^{-1} \\
& +\frac{2}{15} \cos 2 t
\end{align*}
$$

Again for eliminating x from suatios. (1) \& (2), for it We taking (1) $4 D+2\left(D^{2}+3\right)$. he get

$$
\begin{align*}
{\left[\left(D^{2}+3\right)^{2}+4 D^{2}\right] y } & =-4 e^{t}-\sin 2 t \\
\left(D^{4}+10 D^{2}+9\right) y & =-4 e^{t}-\sin 2 t \tag{4}
\end{align*}
$$

$A E$ is $m^{4}+10 m^{2}+9=0 \Rightarrow m=\neq i$, $\pm 3 i$

$$
\begin{aligned}
C \cdot F & =c_{5} \cos t+c_{6} \sin t+c_{7} \cos 3 t+c_{8} \sin 3 t \\
\text { PI. } & =\frac{1}{\left(D^{4}+10 D^{2}+9\right)}\left(-4 e^{-t}\right)-\frac{1}{\left(D^{4}+10 D^{2}+5\right)} \operatorname{sm} 2 t \\
& =-\frac{1}{5} e^{t}+\frac{1}{15} \sin 2 t .
\end{aligned}
$$

$$
\begin{align*}
\therefore y & =c_{1}+1-I \\
& =c_{5} \cos t+c_{8} \sin t+c_{7} \cos 3 t+c_{8} \sin 3 t-t_{5} e^{-t}+\frac{1}{15} \sin 2 t
\end{align*}
$$

Equations (4) \& (6), together give the solution.
Que 4 Solve $\frac{d^{2} x}{d t^{2}}+y=\sin t \& \frac{d^{2} y}{d t^{2}}+x=\cos t$
Ans

$$
\begin{aligned}
& x=c_{4} e^{t}+c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t+\frac{t}{4}(\sin t-\cos t) \\
& y=-c_{1} e^{t}-c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t+\frac{t}{4}(\sin t-\cos t)+\frac{t}{2}\left(\sin t-c_{2} t\right) .
\end{aligned}
$$

Linear differential Equation of $2^{\text {nd }}$ arles with variate corf (31)
An Equation of the form

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

where P, Q and R are functions of r only, is calleal Linear diff Equation of $2^{\text {nd }}$ arrosewith varuile coefficients.
This Equation can te solved by following methods
(1) Reduction of oodles
(2) Normal form
(3) Change of Independent Variate.
(4) Method of Variation of Parameters (V.Imp)
(1) Reduction of orcus (or To find the solution of $y^{\prime \prime}+P y^{\prime}+Q, y=R$ when part of C, F. is known)

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

case-(i) when $y=e^{m x}$ ie part of CF. Then it must satisfies the WH.S. of (1)

$$
\begin{aligned}
& \text { 1.s. of (1) } d^{2}\left(e^{m x}\right)+p \frac{d}{d x^{2}}\left(e^{m x}\right)+Q\left(e^{m x}\right)=0 \\
& \Rightarrow m^{2} e^{m x}+p m e^{m x}+Q e^{m x}=0 \\
& \Rightarrow\left(m^{2}-1 p+Q\right) \cdot e^{m x}=0 \\
& \Rightarrow \quad\left(\because e^{m x}=0\right) \\
& \Rightarrow m^{2}+m p+Q=0
\end{aligned}
$$

if $m=1$, then $1+p+Q=0$ and $y=e^{x}$ is Part of \&F.
if $m=-1$, then $1-P-1 Q=0,1, \quad y=e^{-2}$ is part of $C R$

$$
\text { if } m=-2 \quad \text { than } 4-2 m+Q=0
$$

$\Rightarrow\left[m(m-1)+m p x+Q x^{2}\right] x^{m-2}=0$
$\left(\because x^{m-2}+0\right)$
$\Rightarrow \quad m(m-1)-m p x+\varphi x^{2}=0$.
If $m=1, \quad P+Q x=0$, Then $y=x$ is part of $C F$.
if $m=2, \quad 2+2 p x+\phi x^{2}=0$, Then $y=x^{2}$ is, ", ,.

Working Rule:-
Step-I we put the given Eq. into sfanderal form

$$
\begin{aligned}
& \text { 1. } \frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R, \text { we get } \\
& P=C, \quad Q=C, \quad R=()
\end{aligned}
$$

Step-II Find the part of C.F.
1.

$$
\begin{array}{ll}
\text { 1. } \quad m^{2}+m P+Q=0 & y=e^{m x} \\
\text { 2. } \quad m(m-1)+m P x+Q x^{2}=0, & y=x^{m}
\end{array}
$$

Part of $C F$
I.

Step III complete solution $y=u V$, put in sep (I) and we get

$$
v^{\prime \prime}+\left(P+\frac{2 u^{\prime}}{u}\right) v^{\prime}=\frac{R}{u}
$$

Slep-IV fut $v^{\prime}=t$, then it becomes $t^{\prime}+\left(p+\frac{2 u^{\prime}}{u}\right) t=R / u$ Which is linear int, where $R \neq 0$. solve it usual. if $R=0$, then variable t and x wile be separable. In both cases, we find t.

Step- - fut $t=\frac{d v}{d t}$ or $d v=t d t$
Int $v=\int t d t+c_{2}$
Hence, complete solution $y=u v$

Quel Solve $\frac{d^{2} y}{d x^{2}}-\cot x \frac{d y}{d x}-(1-\cot x) y=e^{x} \sin x$
Sol:- Given Equation is in standard form. So Comparing with

$$
\frac{d^{2} y}{d x^{2}}+9 \frac{d y}{d x}+P y=R
$$

Downloaded from : uptukhabar.net

$$
\therefore P-\cot x, \quad Q=-(1-\cot x), \quad R=e^{x} \sin x
$$

Now $\quad 1-p+\varphi=1-\omega+x-1+\cos t a=0$.
$\therefore u=e^{\text {re }}$ is the part of C.F. of (1) and let $y=u v$ be the complete solution of (1). Now.

$$
\begin{aligned}
& y=e^{x} v \\
& \frac{d y}{d x}=e^{x} \frac{d v}{d x}+v e^{x} \\
& \frac{d^{2} y}{d x^{2}}=e^{x} \frac{d^{2} v}{d x^{2}}+e^{x} \frac{d v}{d x}+V e^{x}+e^{x} \frac{d v}{d x}=e^{x} \frac{d^{2} v}{d x^{2}}+2 e^{x} \frac{d v}{d x}+e^{x} v
\end{aligned}
$$

Put these values in eq (1), we get

$$
\begin{gathered}
e^{x} \frac{d^{2} v}{d x^{2}}+2 e^{x} \frac{d v}{d x}+e^{x} v-\cot x\left(e^{x} \frac{d v}{d x}+v e^{x}\right)-(1-\cot x) v e^{x} \\
=e^{x} \sin x
\end{gathered}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{d^{2} v}{d x^{2}}+(2-\cot x) \frac{d v}{d x}=\sin x \tag{2}
\end{equation*}
$$

Let $\frac{d V}{d x}=t$, then es becomes

$$
\begin{equation*}
\frac{d t}{d x}+(2-\cot x) t=\sin x \tag{3}
\end{equation*}
$$

Which is Linear Eq, in t_{0}

$$
\begin{aligned}
I \cdot F & =e^{\int(2-\cot x) d x} \\
& =e^{\int 2 d x-\int \cot x d x} \\
& =e^{2 x-\log \sin x} \\
& =\left(\frac{e^{2 x}}{\sin x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}+\rho y=Q \\
& I \cdot F=e^{\int P d x}
\end{aligned}
$$

scouter is

$$
y(I \cdot F)=\int Q(I F) d x+\text { our }
$$

Solution of (2) is

$$
\begin{aligned}
& \text { of (x) is } t \cdot(I F)=\int Q(I F) d x+C_{1} \\
& t\left(\frac{e^{2 x}}{\sin x}\right)=\int-\sin x \cdot \frac{e^{2 x}}{\sin x} d x+c_{1} \\
& t\left(\frac{e^{2 x}}{\sin x}\right)=\int e^{2 x} d x+c_{1} \\
& t\left(\frac{e^{2 x}}{\sin x}\right)=\frac{e^{2 x}}{2}+c_{1} \\
& t=\frac{1}{2} \sin x+c_{1} \frac{\sin 2 x}{e^{2 x}}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{1}{2} \sin x+4 e^{-2 x} \sin x \\
& \frac{d v}{d x}=\frac{1}{2} \sin x+c_{1} e^{-2 x} \sin x \\
& \int d v=\int\left(\frac{1}{2} \sin x+c_{1} e^{-2 x} \sin x\right) d v \\
& v=\frac{1}{2} \int \sin x d x+c_{1} \int e^{-2 x} \sin x d x \\
& v=-\frac{1}{2} \cos x+4 \frac{e^{-2 x}}{(-2)^{2}-1^{2}}(-2 \sin x-\cos x)+c_{2} \\
& v=-\frac{1}{2} \cos x-\frac{1}{5} c_{1} e^{-2 x}(2 \sin 2 x+\cos x)+c_{2}
\end{aligned}
$$

Int

Hence complete solution is $y=U V$

$$
\begin{aligned}
& y=e^{x}\left[-\frac{1}{2} \cos x-\frac{1}{5} c_{1} e^{-2 x}(2 \sin x+\cos x)+c_{2}\right] \\
& y=-\frac{1}{2} e^{x} \cos x-\frac{1}{5} c_{1} e^{-x}(2 \sin x+\cos x)+c_{2} e^{-x}
\end{aligned}
$$

Ans
Que Solve $(x \sin x+\cos x) \frac{d^{2} y}{d x}-x \cos x \frac{d y}{d x}-y-\cos x=0$ of Which $y=x$ is a solution.
sol: Given Eq is

$$
(x \sin x+\cos x) \frac{d^{2} y}{d x^{2}}-x \cos x \frac{d y}{d x}+y-\cos x=0
$$

first, we convert it into standard form. Making conf of $\frac{d^{2} y}{d x^{2}}$
bs 1 do Divide whole ε_{q}, by coreff of $\frac{d^{2} y}{d x^{2}}$. we get

$$
\begin{equation*}
\frac{d^{2} y}{d x 2}-\left(\frac{x \cos x}{x \sin x+\cos x}\right) \frac{d y}{d x}+1\left(\frac{\cos x}{x \sin x-1 \cos x}\right) y=0 \tag{1}
\end{equation*}
$$

Here part of $C F=x$ (giver)

$$
u=x
$$

Lat $y=4 V=x v$ be the solution of (1).

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =v+x \frac{d v}{d x} \\
\frac{d^{2} y}{d x 2} & =\frac{d v}{d x}+x \frac{d^{2} v}{d x^{2}}+\frac{d v}{d x}=x \frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}
\end{aligned}
$$

fut these values in eq (1), we get

$$
\left(x \frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}\right)-\left(\frac{x \cos x}{x \sin x-1 \cos x}\right)\left(v+x \frac{d v}{d x}\right)+\left(\frac{\cos x}{x \sin x+\cos x}\right) x v=0
$$

$$
\begin{aligned}
& x \frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}-\frac{x^{2} \cos x}{x \sin x+\cos x} \frac{d v}{d x}=0 \\
\Rightarrow & \quad x \frac{d^{2} v}{d x^{2}}+\left(2-\frac{x^{2} \cos x}{x \sin x+\cos x}\right) \frac{d v}{d x}=0 \\
\Rightarrow \quad & \quad \frac{d^{2} v}{d x^{2}}+\left(\frac{2}{x}-\frac{x \cos x}{x \sin x+\cos x}\right) \frac{d v}{d x}=0 .
\end{aligned}
$$

let $\frac{d v}{d x}=t$, then (2) be comes

$$
\begin{array}{r}
\Rightarrow \quad \frac{d t}{d x}+\left(\frac{2}{x}-\frac{x \cos x}{x-\sin x+\cos x}\right) t=0 \\
\frac{d t}{t}+\left(\frac{2}{x}-\frac{x \cos x}{x \sin x+\cos x}\right) d x=0
\end{array}
$$

Separate the variables

Tut $\int \frac{d t}{t}+\int\left(\frac{2}{x}-\frac{x \cos x}{x \sin x+\cos x}\right) d x=0$

$$
\begin{aligned}
& \Rightarrow \quad \log t+2 \log x-\log (x \sin x+\cos x)=\log c_{1} \\
& \Rightarrow \quad \log \left(\frac{t \cdot x^{2}}{x \sin x+\cos x}\right)=\log c_{1} \\
& \Rightarrow \quad t \cdot x^{2}=c_{1}(x \sin x+\cos x) \\
& \Rightarrow \quad t=c_{1}\left(\frac{\sin x}{x}+\frac{\cos x}{x^{2}}\right) \\
& \Rightarrow \quad \frac{d v}{d x}=c_{1}\left(\frac{\sin x}{x}+\frac{\cos x}{x^{2}}\right) \\
& \Rightarrow \quad d v=4\left(\frac{\sin x}{x}+\frac{\cos x}{x^{2}}\right) d x
\end{aligned}
$$

Int

$$
\begin{aligned}
& V=c\left[\int \frac{\sin x}{x} d x+\int \frac{\cos x}{x^{2}} d x\right] \\
& =C_{1}\left[\frac{1}{x} \int \sin x d x-\int\left(\frac{d}{d x}\left(\frac{1}{x}\right) \int \sin x d x\right) d x\right. \\
& \left.+\int \frac{\cos x}{x^{2}} d x\right] \\
& =G\left[-\frac{1}{x} \cos x-\int+\frac{1}{x^{2}} \cos x d x+\int \frac{\cos x}{x^{2}} d x\right] \\
& V=-\frac{c_{1}}{x} \cos x+c_{2}
\end{aligned}
$$

Hence complete sis. is $y=u v=x\left(-\frac{4}{x} \cos x+c_{2}\right)$

$$
y=-c_{1} \cos x+c_{2} x
$$

Aus

Que 3$)$ Solve $y^{\prime \prime}-4 x y^{\prime}+\left(1 x^{2}-2\right) y=0$ given that

$$
y=e^{x^{2}} \text { is solution }
$$

Ans $\quad y=e^{x^{2}}\left(x c_{1}+c_{2}\right)$.
(2) Find the complete solution of $y^{\prime \prime}+P y^{\prime}+Q y=R$ when it is reduced to Normal form $\left(\frac{d^{2} V}{d x^{2}}+I V=S\right.$, where $I=Q-\frac{1}{2} \frac{d p}{d x}$ $-\frac{1}{4} p^{2}$ and $s=R / u$) or Remonel of first derivatives
When CF con not be determined by previous Method, then we reduce the given diff Eq. in Normal form

$$
\frac{d^{2} v}{d x^{2}}+I v=S
$$

Where $\quad I=Q-\frac{1}{2} \frac{d P}{d x}-\frac{1}{d} P^{2}, \quad S=R / 4, \quad u=e^{-\frac{1}{2} \int P d x}$
Wo king Rules-
Step-r Put the given Eq. into standard form

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+\varphi y=R
$$

So we get $P=(, \quad Q=(,, R=($)
Step II lat $y=U V$ be the complete solution where $u=e^{-\frac{1}{2} \int P d x}$ and v is given by $\frac{d^{2} V}{d x^{2}}+I V=S$, where $I=Q-\frac{L}{2} \frac{d P}{d x}-\frac{1}{4} P^{2}$ and $s=R / u$.

Note:-(1) $P=$ Multiple of even number.
(2) If $I=$ constant then Normal Eq. Will be Lineal diff Eq. \& constant coefficients.
and if $I=\frac{\text { constant }}{x^{2}}$, then it becomes cauchy-Euler Equation
Que Solve $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x$.
S5:- Comparing the given Eq. With standard form

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}-1 \quad Q y=R
$$

Downloaded from : uptukhabar.net

$$
\therefore P=-4 x, \quad Q=4 x^{2}-1, \quad R=-3 e^{x^{2}} \sin 2 x
$$

Let $y=u v$ be the complete solution of $0 D$. where

$$
u=e^{-\frac{1}{2} \int P d x}=e^{-\frac{1}{2} \int-4 x d x}=e^{\int 2 x d x}=e^{2 \frac{x^{2}}{2}}=e^{x^{2}}
$$

and v is given by $\frac{d^{2} v}{d x^{2}}+I v=S$,
where

$$
\begin{aligned}
I & =Q-\frac{1}{2} \frac{d p}{d x}-\frac{1}{4} p^{2} \\
& =\left(4 x^{2}-1\right)-\frac{1}{2}(-4 x)-\frac{1}{4}(4 x)^{2} \\
& =4 x^{2}-1+\frac{4 x}{2}-4 x^{2} \\
& =4 x^{2}-1+2-4 x^{2}=1 .
\end{aligned}
$$

$$
S=R / u=-\frac{3 e^{x^{2}} \sin 2 x}{e^{x^{2}}}=-3 \sin 2 x
$$

By eq (2), we get

$$
\begin{align*}
& \frac{d^{2} v}{d x^{2}}+v=-3 \sin 2 x \\
& \left(D^{2}+1\right) v=-3 \sin 2 x \tag{3}
\end{align*}
$$

AE. If $\quad m^{2}+1=0$

$$
\begin{aligned}
& \Rightarrow \quad m=0 \pm i \quad(\alpha=0, \beta=1) \\
C \cdot F & =e^{0 x}\left[4 \cos x+c_{2} \sin x\right] \\
f \cdot I & =\frac{1}{\left(D^{2}+1\right)}-3 \sin 2 x \\
& =-3 \frac{1}{\left(D^{2}+1\right)} \sin 2 x \\
& =-3 \frac{1}{(-4+1)} \sin 2 x \\
& =-3 \frac{1}{-3} \sin 2 x=\sin 2 x
\end{aligned}
$$

$$
\left(\because D^{2}=-2^{2}=-4\right.
$$

Solution of (3) is $v=C F+P \cdot I$

$$
V=c_{1} \cos x+c_{2} \sin x+\sin 2 x
$$

Hence, complete sol. of given diff Eq is $y \leq u v$

$$
y=e^{x^{2}}\left(-c_{1} \cos x+c_{2} \sin x+\sin 2 x\right)
$$

Que 2) Solve $\frac{d^{2} y}{d x^{2}}+\frac{1}{x^{1 / 3}} \frac{d y}{d x}+\left(\frac{1}{4 x^{2 / 3}}-\frac{1}{6 x^{4 / 3}}-\frac{6}{x^{2}}\right) y=0$
SEI: Comparing with standard form

$$
\begin{gather*}
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R \tag{1}\\
\therefore P=\frac{1}{x^{1 / 3}}, Q=\frac{1}{4 x^{2 / 3}}-\frac{1}{6 x^{4 / 3}}-\frac{6}{x^{2}}, R=0 .
\end{gather*}
$$

Let $y=u v$ be the solution of (1)., where

$$
\begin{align*}
u=e^{-\frac{1}{2} \int p d x} \equiv e^{-\frac{1}{2} \int x^{-1 / 3} d x}=e^{-\frac{1}{2}\left(\frac{x^{-1 / 3}+1}{-1 / 3+1}\right)} & =e^{-\frac{1}{2} \frac{x^{2 / 3}}{2 / 3}} \\
& =e^{-\frac{3}{4} x^{2 / 3}} \tag{2}
\end{align*}
$$

and v is given by $\frac{d^{2} v}{d x^{2}}+I v=S$
where

$$
\begin{aligned}
I & =Q-\frac{1}{2} \frac{d p}{d x}-\frac{1}{4} P^{2} \\
& =\frac{1}{4 x^{2 / 3}}-\frac{1}{6 x^{4 / 2}}-\frac{6}{x^{2}}-\frac{1}{2}\left(-\frac{1}{3} x^{-4 / 3}\right)-\frac{1}{4} x^{-2 / 3} \\
& =\frac{1}{4} x^{-3 / 2}-\frac{1}{6} x^{-4 / 3}-\frac{6}{x^{2}}+\frac{1}{4} x^{4 / 3}-\frac{1}{4} x^{1 / 3} \\
& =-\frac{6}{x^{2}} . \\
S & =\frac{R}{U}=0 .
\end{aligned}
$$

By $\&(2)$, Normal form is $\frac{d^{2} v}{d x^{2}}-\frac{6}{x^{2}} v=0$

$$
\begin{equation*}
\Rightarrow \quad x^{2} \frac{d^{2} v}{d x^{2}}-6 v=0 \tag{3}
\end{equation*}
$$

Which is Cauchy -Euler equation so put $x=e^{2}$ or $z=\log x$ and

$$
x \frac{d v}{d x}=D_{1} v \quad ; \text { Where } D_{1} \equiv \frac{d}{d z}
$$

$$
x^{2} \frac{d^{2} v}{d x^{2}}=D_{1}\left(D_{1} \rightarrow 1\right) v \quad \text { in } 3
$$

\therefore (3) becomes

$$
\begin{align*}
& {\left[D_{1}\left(D_{1}-1\right)-6\right] v=0} \\
& \left(D_{1}^{2}-D_{1}-6\right) v=0 \tag{4}
\end{align*}
$$

AE is $m^{2}-m-6=0 \Rightarrow(m+2)(m-3)=0$

$$
\begin{aligned}
& m=3,-2 \\
\Rightarrow & C F=e^{32}+c_{2} e^{-2 z}, \quad P-1=0
\end{aligned}
$$

sis Gatutnon of (1) is $V=C F \rightarrow P I$

$$
\begin{aligned}
& V=c_{1} e^{32}+c_{2} e^{-22}+0 \\
& V=c_{1} x^{3}+c_{2} x^{-2}
\end{aligned}
$$

there, complete station of given of (1) is $y=u v$

$$
y=e^{-\frac{y}{1} x^{2 / 2}}\left(4 x^{2}+c_{2} x^{-2}\right)
$$

Sill
Ans $y=e^{\frac{1}{2} x^{2}}\left[c_{1} e^{3 x}+c e^{-3 x}+\frac{1}{9}\left(x^{2}+2 / g\right)\right]$. Ans
(3) sid Method To find complete solution of $y^{\prime \prime}+P y^{\prime}+Q y=R$ If changing the independent Variable
consider $y^{\prime \prime}+P y^{\prime}+\varphi y=R$
Let independent variole x changed to z where $z=f(x)$

$$
\begin{aligned}
\therefore y^{\prime}=\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x} & =y_{1} \cdot z^{\prime} \\
y^{\prime \prime}=\frac{d^{\prime} y^{\prime}}{d x}=\frac{d}{d x}\left(y_{1} z^{\prime}\right) & =y_{1} z^{\prime \prime}+z^{\prime} \cdot \frac{d y_{1}}{d x} \\
& =y_{1} z^{\prime \prime}+z^{\prime} \frac{d y_{1}}{d z} \cdot \frac{d z}{d x} \\
& =y_{1} z^{\prime \prime}+z^{\prime} y_{2} \cdot z^{\prime} \\
& =\left(z^{\prime}\right)^{2} y_{2}+z^{\prime \prime} y_{1}
\end{aligned}
$$

Put the value in c_{q} (1), we get

$$
\begin{aligned}
& \left(z^{\prime}\right)^{2} y_{2}+z^{\prime \prime} y_{1}+P\left[y_{1} z^{\prime}\right]+Q y=R \\
& \left(z^{\prime}\right)^{\prime} y_{2}+\left(z^{\prime \prime}+P z^{\prime}\right) y_{1}+Q y=R \\
& \Rightarrow y_{2}+\left\{\frac{z^{\prime \prime}+P z^{\prime}}{\left(z^{\prime}\right)^{2}}\right\} y_{1}+\frac{Q}{\left(z^{\prime}\right)^{2}}=\frac{R}{\left(z^{\prime}\right)^{2}} \\
& \Rightarrow y_{2}+P_{1} y_{1}+Q, y=R,
\end{aligned}
$$

Where $P_{1}=\frac{z^{\prime \prime}+P z^{\prime}}{\left(z^{\prime}\right)^{2}}, Q_{1}=\frac{Q}{\left(z^{\prime}\right)^{2}}, \quad R_{1}=\frac{R}{\left(z^{\prime}\right)^{2}}$.

Working Rule: -(1) This Method is useful when square root (40) of A is possible.
(2) Choose z, at $\left(\frac{d z}{d x}\right)^{2}=Q\left(\begin{array}{l}\text { Note carefully that, we orate } \\ \text { omit -he sign of } Q \text {. This in }\end{array}\right.$ extremely Important to find real values)

Quels By changing the independent variable, solve the diff Eq.

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+4 x^{2} y=x^{4} \tag{4}
\end{equation*}
$$

St: G: Given E_{q} is $\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+4 x^{2} y=x^{4}$
Comparing with $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$

$$
\therefore P=-\frac{1}{x}, \quad Q=4 x^{2}, \quad R=x^{4} .
$$

Choose z, such that $\left(\frac{d z}{d x}\right)^{2}=4 x^{2}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d z}{d x}=2 x \\
& \Rightarrow \quad d z=2 x d x
\end{aligned}
$$

Tut $\quad \int d z=\int 2 x d x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{z=2 \frac{x^{2}}{\alpha}=x^{2}}{\square} \frac{z=x^{2}}{z^{\prime}=2 x} \\
& z^{\prime \prime}=2
\end{aligned}\binom{\text { omit constant }}{\text { always })}
$$

Change independent varble x to z, then transform $E q$. is

$$
\begin{equation*}
y_{2}+P_{1} y_{1}+Q_{1} y=R_{1} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{1}=\frac{P z^{\prime}+z^{\prime \prime}}{\left(z^{\prime}\right)^{2}}=\frac{-\frac{1}{x} \times 2 x+2}{(2 x)^{2}}=0 . \\
& Q_{1}=\frac{Q}{\left(z^{\prime}\right)^{2}}=\frac{4 x^{2}}{(2 x)^{2}}=1 . \\
& R_{1}=\frac{R}{\left(z^{\prime}\right)^{2}}=\frac{x^{4}}{(2 x)^{2}}=\frac{1}{4} x^{2}=\frac{1}{4} z \text { (Inter of } r \text {) }
\end{aligned}
$$

By eq (2), we hove

$$
\begin{equation*}
\Rightarrow \quad \frac{d^{2} y}{d z^{2}}+y=\frac{1}{4} \tag{3}
\end{equation*}
$$

ARM $m^{2}+1=0$

$$
m=0 \pm i
$$

$$
\begin{aligned}
C \cdot I & =e^{0 z}\left[4 \cos z+c_{2} \sin z\right] \\
P \cdot I & =\frac{1}{\left(D^{2}+1\right)} \frac{z}{4} \\
& =\frac{1}{4} \frac{1}{1}\left[1+D^{2}\right] \\
& =\frac{1}{4}\left[1+D^{2}\right]^{-1} z \\
& =\frac{1}{4}\left[1-D^{2}\right] z=\frac{1}{4} z-0=\frac{1}{4} z
\end{aligned}
$$

Solution of (3) is $y=C F+P \cdot R$.

$$
\begin{aligned}
y & =c_{1} \cos z+c_{2} \sin z+\frac{1}{4} z^{2} \\
& =c_{1} \cos x^{2}+c_{2} \sin x^{2}+\frac{1}{4} x^{2} \quad \text { Ans }
\end{aligned}
$$

Que 2) Solve by method of changing the independent variable

$$
\cos x \frac{d^{2} y}{d x^{2}}+\sin x \frac{d y}{d x}-2 y \cos ^{3} x=2 \cos ^{5} x
$$

sf:-Givm εq is

$$
\cos x \frac{d^{2} y}{d x^{2}}+\sin x \frac{d y}{d x}-2 y \cos ^{3} x=2 \cos ^{5} x
$$

We first, convert it into storndard form, so Multiplying worth Equation by $\cos x$, so, we get

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}-\left(2 \cos ^{2} x\right) y=2 \cos ^{4} x \tag{1}
\end{equation*}
$$

Comparing with standard form

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R \\
\therefore & P=\tan x, \quad Q=\frac{\cos }{}=2 \cos ^{2} x, \quad R=2 \cos ^{1} x
\end{aligned}
$$

Now choose z, such that $\left(\frac{d z}{d x}\right)^{2}=\cos ^{2} x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d z}{d x}=\cos x \\
& \Rightarrow \quad d z=\cos x d x \\
& \text { Iut } \quad z=\sin x \\
& \frac{d z}{d x}=\cos x, \quad \frac{d^{2} x}{d x^{x}}=-\operatorname{sen} x \\
& P_{1}=\frac{P \frac{d z}{d x}+\frac{d^{2} z}{d x^{2}}}{\left(\frac{d z}{d x}\right)^{2}}=\frac{\tan x \cdot \cos x-\sin ^{2} x}{\cos ^{2} x}=\frac{\sin x-\sin x}{\cos x}=0 \\
& Q_{1}=\frac{Q}{\left(\frac{d z}{d x}\right)^{2}}=\frac{-2 \cos ^{2} x}{\cos ^{2} x}=-2 \\
& R_{1}=\frac{R}{\left(\frac{d z}{d x}\right)^{2}}=\frac{2 \cos ^{4} x}{\cos ^{2} x}=2 \cos ^{2} x=2\left(1-\sin ^{2} x\right)=2\left(1-x^{2}\right)
\end{aligned}
$$

Trausform Equation is $\frac{d^{2} y}{d z^{2}}+P_{1} \frac{d y}{d z}+Q_{1} y=P_{1}$

$$
\begin{array}{rr}
\Rightarrow & \frac{d^{2} y}{d z^{2}}+0 \cdot \frac{d y}{d z}-2 y=2\left(1-z^{2}\right) \\
\Rightarrow & \frac{d^{2} y}{d z^{2}}-2 y=2\left(1-z^{2}\right) \tag{2}
\end{array}
$$

A.E. is $m^{2}-2=0$

$$
\begin{aligned}
& \Rightarrow \quad m=0 \pm \sqrt{2} \\
C F & =e^{0 z}\left[c_{1} \cosh (\sqrt{2} z)+c_{2} \sinh (\sqrt{2} z)\right] \\
\text { P.I. } & =\frac{1}{-2+D^{2}} 2\left(1-z^{2}\right) \\
& =\frac{1}{-\not 2\left[1-\frac{D^{2}}{2}\right]} \text { 2 }\left(1-z^{2}\right) \\
= & -\left[1-\frac{D^{2}}{2}\right]^{-1}\left(1-z^{2}\right) \\
=-\left[1+\frac{D^{2}}{2}\right]\left(1-z^{2}\right) & =-\left[\left(1-z^{2}\right)+\frac{1}{2} D^{2}\left(1-z^{2}\right)\right] \\
& =-\left[1-z^{2}+\frac{1}{2}(-2)\right] \\
& =r^{2}
\end{aligned}
$$

So solution of (2) is $y=C F-P \cdot \mathbb{C}$.

$$
y=G_{1} \cosh (\sqrt{2} z)+c_{2} \sinh (\sqrt{2} z)+z^{2}
$$

complebe sel of given ε_{q} is

$$
y=c_{1} \cosh (\sqrt{2} \sin x)+c_{2} \sinh (\sqrt{2} \sin x)+\sin ^{2} x
$$

Que 3) Solve by changing the independent variole

$$
\frac{d^{2} y}{d x^{2}}+(3 \sin x-\cot x) \frac{d y}{d x}+2 y \sin ^{2} x=e^{\cos x} \sin ^{1} x
$$

Ans $y=4 e^{\cos x}+c e^{2 \cos x}+\frac{e^{-\cos x}}{6}$. Are
V.v.oup

Method 4 (Method of Variation of Parameters)
This method
is applicable when C.F is known. This method is quit. general and applies to equation of the form

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R \text {, where } P, Q, R \text { are }
$$

functions of x only.
It gives $P_{1} I_{1}=-y_{1} \int \frac{y_{2} R}{w} d x+y_{2} \int \frac{y_{1} R}{w} d x$
Where $y_{1} \& y_{2}$ are solutions of $y^{\prime \prime}+P y^{\prime}+Q y=0$.
and $W=$ Wranskian of $y_{1}+y_{2}$

$$
=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Que 1) Solve by Method of variation of Parameters:

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x
$$

- Sol:- Given ε_{q}. is $\frac{d^{2} y}{d x^{2}}+y=\tan x$
comparing with standard form

$$
\frac{d^{2} y}{d x z}+P \frac{d y}{d x}+Q y=R
$$

$$
\therefore P=0, \quad Q=1, \quad R=\tan x
$$

For CF $\quad\left(D^{2}+1\right) y=0$.
$A E$ is $\quad D^{2}+1=0 \Rightarrow m^{2}+1=0 \Rightarrow m=0 \pm 1$

$$
\begin{aligned}
& C_{1} F=e^{o x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& C F=c_{1} \cos x+c_{2} \sin x
\end{aligned}
$$

ForP.E. let $y_{1}=\cos x, \quad y_{2}=\sin x$

$$
W=\text { wronskion of } y_{1} \& y_{2}=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

$$
W=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x-\left(-\sin ^{2} x\right)=\cos ^{2} x+\sin ^{2} x=1
$$

$$
\begin{aligned}
P \cdot I \cdot & =-y_{1} \int \frac{y_{2} R}{W} d x+y_{2} \int \frac{y_{1} R}{w} d x \\
& =-\cos x \int \frac{\sin x \cdot \tan x}{1} d x+\sin x \int \frac{\cos x \cdot \tan x}{1} d x \\
& =-\cos x \int \frac{\sin ^{2} x}{\cos x} d x+\sin x \int \cos x \frac{\sin x}{\operatorname{cosec} x} d x \\
& =-\cos x \int \frac{1-\cos ^{2} x}{\cos x} d x+\sin x(-\cos x) \\
& =-\cos x\left[\int \frac{1}{\left.\cos x d x-\int \cos x d x\right]-\sin x \cos x}\right. \\
& =-\cos x\left[\int \sec x d x-\sin x\right]-\sin x \cos x \\
& =-\cos x[\log (\sec x+\tan x)-\sin x]-\sin x \cos x \\
& =-\cos x \log (\sec x+\tan x)+\cos x \sin x-\sin x \tan x \\
& =-\cos x \log (\sec x+\tan x) .
\end{aligned}
$$

complete solution is $y=C \cdot F+P \cdot I$

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \log (\sec x+\tan x)
$$

Ane
Que Solve by Method of Variation of Parameters.

$$
\left(D^{2}-1\right) y=2\left(1-e^{-2 x}\right)^{-1 / 2}
$$

S6):- Given Eq. can be put $\frac{d^{2} y}{d x^{2}}-y=2\left(1-e^{-2 x}\right)^{-1 / 2}$
Comparing with $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$

$$
\therefore P=0, \quad Q=-1, \quad R=2\left(1-e^{-2 x}\right)^{-1 / 2}
$$

ForCE:- put $\frac{d^{2} y}{d x^{2}}-y=0$.

$$
\begin{gathered}
\text { AF. is } m^{2}-1=0 \Rightarrow \quad \begin{array}{l}
m=11 \\
C \cdot F \cdot=y=c e^{x}+c e^{-x}
\end{array}, \quad y_{1}=e^{x}, \quad y_{2}=e^{-x}
\end{gathered}
$$

For P.I.

$$
W=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-1-1=-2
$$

$$
\begin{aligned}
& \text { PI }=y_{1} \int \frac{y_{2} R}{\omega} d x+y_{2} \int \frac{y_{1} R}{w_{1}} d x \\
& e^{x} \int \frac{e^{-x} \cdot(1-2)\left(1-e^{-2 x}\right)^{-1 / 2}}{2} d x+e^{-x} \int \frac{e^{x} 2\left(1-e^{-2 x}\right)^{-1}}{(-2)} d x \\
& =e^{x} \int \frac{e^{-x}}{\sqrt{1-e^{-x}}} d x+e^{-x} \int \frac{e^{x}}{\sqrt{1-e^{-2 x}}} d x \\
& =e^{x} \int \frac{e^{-x}}{\sqrt{1-e^{-x}}} d x-e^{-x} \int \frac{e^{x x}}{\sqrt{e^{2 x}-1}} d x \\
& =e^{x}\left(-\sin ^{-1}\left(c^{x}\right)\right)-\frac{e^{-x}\left(e^{2 x}-1\right)^{1 / 2}}{a} I_{1}=\int \frac{e^{-x}}{\sqrt{1-e^{-x}}} d x \text { we } e^{-x}=t \\
& =-e^{x} \sin ^{-1}\left(c^{x}\right)-e^{-x}\left(e^{2 x}-1\right)^{1 / 2} \\
& \text { complete solution is } \\
& y=C R-R \\
& \begin{array}{c}
y=c_{1} c^{x}+c_{2} e^{-x}-e^{x} \sin ^{-1}\left(e^{x}\right) \\
-e^{-x}\left(e^{2 x}-1\right)^{\frac{y}{2}}
\end{array} \\
& \text { Ar } \\
& \text { Queer) Use the Method of Variation } \\
& \text { of parameters to solve } \\
& x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2} e^{x} \\
& \text { spf.. Given Eq is }
\end{aligned}
$$

frost, wee convert it into standard form so multiplying whole Eq boy x^{2}, we get

$$
\Rightarrow y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=e^{x}
$$

comparing with $y^{\prime \prime}+P y^{\prime}+Q y=R$

$$
\therefore P=1 / x, \quad Q=-1 / 22, \quad R=e^{x}
$$

In cF. Put $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2} 2} y=0$

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

This is cauchy. Euler Equation so pat $x=e^{z}$ or $z=\log x$
Downloaded from : uptukhabar.net
and $x_{1}=D 1$

$$
a^{2} D^{2}=D_{1}\left(D_{1}-1\right) \text { when, } D_{1}=\frac{d}{d 2} \text {. }
$$

Equation (2) becomes

$$
\left[D_{1}\left(D_{1}-1\right)+D_{1}-1\right] y=0
$$

$$
\begin{aligned}
& \Rightarrow \quad\left[D_{1}^{2}-D_{1}+D_{1}-1\right] y=0 \\
& \Rightarrow \quad\left(D_{1}^{2}-1\right) y=0
\end{aligned}
$$

AF. if $m^{2} 1=0, \Rightarrow \quad m= \pm 1$.

$$
c_{1}=c_{1} e^{2}+c_{2} e^{-2}=c_{1} x+c_{2} x^{-1}
$$

For P.I Let $y_{1}=x \& y_{2}=x^{-1}$ and $R=e^{x}$.

$$
\begin{aligned}
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & x 1 \\
1 & -x^{-2}
\end{array}\right|=-x^{-1}-x^{-1}=-\frac{2}{x} \\
& P \cdot 1=-y_{1}\left[y_{2} R\right.
\end{aligned}
$$

$$
\begin{aligned}
P \cdot 1 & =-y_{1} \int \frac{y_{2} R}{\omega} d x+y_{2} \int \frac{y_{1} R}{\omega} d x \\
& =-x \int-1
\end{aligned}
$$

$$
\begin{aligned}
& =-x \int \frac{x^{-1} \cdot e^{x}}{-\frac{1}{x}} d x+x^{-1} \int \frac{x e^{x}}{-2 / x} d x \\
& =-x \int e^{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =+\frac{x}{2} \int e^{x} d x+x+\left(-\frac{1}{2}\right) \int x^{2} e^{x} d x \\
& =x-x+\int
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{2} c^{x}-\frac{x^{1}}{2}\left[x^{2}\left(c^{x}\right)-(2 x)\left(e^{x}\right)+2\left(e^{x}\right)\right] \\
& =\frac{x}{2} e^{x}-\frac{x^{1}}{2} e^{x}\left(x^{2}-2 x+2\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{2} e^{x}-\frac{x-1}{2} e^{x}\left(x^{2}-2 x+2\right) \\
& =e^{x}\left[x \int x\right.
\end{aligned}
$$

$$
=e^{x}\left[\frac{x}{2}-\frac{x}{2}+\frac{2}{2}-x-1\right]=e^{x}(1-1 / x)
$$

\therefore Complete solution is $y=C F+\rho \cdot \sigma$

$$
y=c_{1} x+c_{2} x^{-1}+e^{x}(1-1 / x)
$$

Que 4) Solve by Method of variation of Parameters the following diff Equates
(i) $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x ;$ Ans $y=c_{1} \cos a x+c \sin a x+\frac{\cos a x}{a^{2}} \log \cos a x+$ $\frac{x}{a} \sin a x$
(ii) $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$. An $y=\left[\log \left(\frac{1+e^{x}}{e^{x}}\right)-e^{-x}+c\right] e^{x}+\left[-\log \left(1+e^{x}\right)+\frac{c}{2}\right] e^{-x}$
(111) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}=\left[\log \left(e^{-x}+1\right)+c\right] e^{x}+\left[\log \left(1+e^{-x}\right)-\left(1+e^{-x}\right)+c_{2}\right] e^{2 x}$
(IV) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin x$, ANy $y=c_{1}+c_{2} e^{2 x}-\frac{e^{x}}{2} \sin x$

