Module-5' Vector Calculus

Scalor and vector functions

A.S.

1 m

00

10

10

100

100

-

Scalon function f(1, y, z) & a function defined at each point in a Certain domain D in a space. Its value & oreal and depends only on the Point P(1, y, z) in space but not on any particular Boardenade & System being und

If to each value of a Scalar vonvable t, three Cossephendra value of a vector of them of B Called a Vector function of the Scalar vonvable t and we write of = of the scalar vonvable t and we write of = of the or of = f(t).

For Eg, the Position vector of a Ponticke moving along a Cunred Path & a vector function of timet

 \vec{f} (t) = f_1 (t) \vec{i} + f_2 (t) \vec{j} + f_3 (t) \hat{k} where \vec{i} , \vec{j} , \vec{k}

denote Unit vectors along the axis of 2, y, z aupatients and fict), f3(4), f3(4) are called the Components of the vector Fat) along the Co-ordinate axes Derivative of a vector function with subject to a scalar let si = fit be a & Vector function of the Scalar Variable t. thun doi is cloself a vector function of t and its derivative & denoted by doi and & called. the second derivative of of with subject to t. <u>Note</u> i, j i being fixed Unit vectors are Constant vectors.

5

-

1

1

-

-

8

 $\frac{di^{4}}{dt} = \frac{dj^{1}}{dt} = \frac{di^{2}}{dt} = \vec{\partial}$

Que find the Unit tangent Vator at any point on the Curve 2=t²+2, y=4t-5, z=2t²-6t, where t is any Variable. Also determine the Unit tangent vectors at the boint t=2

Son If de is the position vector of any Point (2, 4, 2) on the given Cunne then d = 1i + yj + zk $d = (t^2 + 2)i + (t - 5)j + (2t^2 - 6t)k$ The vector d = is along the tangent at the boint (2, y, z) to the given Cunne. Downloaded from : uptukhabar.net

Examples. A particle moves on the curve 2=2t, y=tyt Z= 3t-5, While t is the time, find the Components 9 of velocity and acculonation on time t=1 in the direction i -3]+21 Sul If of is the Position Vector of any point (118.2) on the given Conve, then x=2i+yj+zk = 2€1+(+2-4+)j+(3+-5)k Velocity $\vec{V} = d\vec{x} - 4t (1 + (2t - 4)) + 3k$ =41 -21 + 32 at t=1 Accelonation $\vec{a} = \frac{d}{dt} = 4i + 2i$ at t=1 Now Unit vector in the given direction 1 l' - 3j' + 2k = l - 8j + 2k = hThe component of velocity on the given divertion cl $= \overline{V} \cdot \widehat{n} = (4\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (\hat{i} - 3\hat{j} + 2\hat{k})$ = 4(1) - 2(-3) + 3(2) = 16JIY - RITY and the component of accelonation on the given divertis $= \overline{a} \cdot \widehat{h} = (4i + 2j) \cdot (i - 3j + 2k)$ JIY -2 = - 514

Now
$$\frac{d\theta^2}{dt} = 3tit + 4jt + (4t-6)it$$

and $\frac{d\theta^2}{dt} = J(\theta t)^2 + (4j^2 + (4t-6)^2)^2$
 $= 3 J_{5t^3} - 19t + 13$

The Unit tongent vector $\hat{T} = \frac{d\hat{a}\hat{z}}{d\hat{t}} = \frac{t\hat{1}+2\hat{j}+(2t-3)\hat{z}}{\left|\frac{d\hat{a}\hat{z}}{d\hat{t}}\right|}$

Also Unit tangent V cotor at that point t = 3PS $2i^{2}+3f+(2x3-3)k^{2} = \frac{1}{3}(2i^{2}+3f+k^{2})$ $\overline{\int 5^{2}x^{2}-13x^{2}+13}$

Find the angle between the tangents to the curve $\vec{x} = \vec{t}\vec{i} + 2t\vec{j} + t\vec{t}\vec{k}$ at the points $t = \pm 1$

Sui dui = 2+i + 2j+ 3+i i is a vector along the tangent off at any point t'

If Ti and Ta ene the vectors along the tangent

ab
$$t=1$$
 and $t=-1$ Suspectively, then
 $\vec{T}_1 = a\hat{i} + a\hat{j} + s\hat{k}$ and $\vec{T}_2 = -a\hat{i} + a\hat{j} + s\hat{k}$
 $\vec{T}_1 = a\hat{i} + a\hat{j} + s\hat{k}$ and $\vec{T}_2 = -a\hat{i} + a\hat{j} + s\hat{k}$

$$Correct = \frac{1}{1}, \frac{1}{12} = 2(-2) + 2(2) + 2(3) = \frac{9}{17}$$

$$I\overline{7}I\overline{6} = \frac{1}{17}$$

$$I\overline{7}I\overline{6} = \frac{1}{17}$$

 $\Theta = Cost(\frac{9}{12})$

Scalor and vector fields

10

- CP

100

10

-

100

-

-

1

L

-

- 11

-

-

1

A Vaniable quantity whose value at any Point in a sugin of Space depends upon the position of the point Three are two paynes types of point function

5

Scalen Point function et R be a dugion of Space at each point of which a Scalen 0 = 4(7.3.2) is given then & B Called Scalen Function and R B Called a Scalen field.

The temperature clustribution in a medium, the distribution of atmosphinic pressure in Space one examples of Scalar point function.

Vector Point Function - let R be a degin of space at each point of which a vector V=VCUS.) is given. Hun V B Called a Vector point function and R is Called a Vector field.

Every vector V of the field & regarded as a localised vectors attached to the Coveresponding point (7, y, z)

The velocity of a moving fluid at any instant the gravitational force cre example of vector point function

Groadient of a Scalon field 6

Let \$(2, y, z) be function defining a Scalar field. the the vector $i\frac{\partial \varphi}{\partial \varphi} + \frac{\partial \varphi}{\partial z} + \frac{\partial \varphi}{\partial z}$ is Called gradient of Scalar field \$ and is denoted as grady

Thus $grad \phi = \hat{c} \frac{\partial \varphi}{\partial t} + \hat{f} \frac{\partial \varphi}{\partial t} + \hat{f} \frac{\partial \varphi}{\partial z}$

The gradient of Scalar field β B Obtained by Operating on β by the veccotr Operator $\hat{C} \xrightarrow{\partial} + \int \frac{\partial}{\partial t} + \frac{\partial}{\partial t} + \frac{\partial}{\partial t} = \hat{C} \xrightarrow{\partial} + \hat{T} \xrightarrow{\partial}$

Note Groadvent of a Scalon field & B avector hormal to the Sinface Ø=C and has a magnitude equal to the Scale of Change of Ø this along the hormal 121

$$\left[\Delta \varrho \right] = \left[\varphi \Delta \right]$$

Directional derivative. Directional derivative of a Scalar Field & at a point P(2, y, z) in the direction of a Unit Vector à is given by $\int \frac{\partial f}{\partial s} = (grad f) a$

* find grady When
$$\psi = 3x^{2}y - y^{3}z^{2}$$
 at boint $(1, -3, -1)$
Solⁿ grad $\psi = \nabla \psi = \left(\frac{1}{\alpha} + \frac{1}{\alpha}\frac{1}{\alpha} + \frac{1}{\alpha}\frac{1}{\alpha} + \frac{1}{\alpha}\frac{1}{\alpha}\right) (x^{2}y - \frac{1}{\alpha}\frac{1}{\alpha}\right)$
 $= \left(\frac{1}{\alpha}(3^{2}y - y^{2}z) + \frac{1}{2\alpha}(3^{2}y - y^{2}z) + \frac{1}{\alpha}\frac{1}{\alpha}(3^{2}z - y^{2}z)\right)$
 $= \left((xy) + \frac{1}{2}(3^{2}z - 3\frac{1}{2}z) + \frac{1}{\alpha}(-3\frac{1}{\alpha}z - y^{2}z)\right)$
 $= (1 + - q^{2}) - (1 + 1 + \alpha + boint (1, -3, -1))$
* Should that $\nabla S^{h} = h \cdot h^{h, 3} \cdot d$ and have evaluate ∇f_{h}
where $\partial z = \tau (1 + 3\frac{1}{2} + z^{2})$
 $= \left(\left(n \cdot 3^{H} - \frac{1}{\alpha}\frac{1}{\alpha} + \frac{1}{\alpha}\frac{1}{\alpha} + \frac{1}{\alpha}\frac{1}{\alpha}\right)^{h}$
 $= \left(\left(n \cdot 3^{H} - \frac{1}{\alpha}\frac{1}{\alpha}\right) + \frac{1}{\alpha}\left(n \cdot 3^{H} - \frac{1}{\alpha}\frac{1}{\alpha}\right) + \frac{1}{\alpha}\left(n \cdot 3^{H} - \frac{1}{\alpha}\frac{1}{\alpha}\right)$
 $\partial z = -\tau (1 + 3\frac{1}{2} + z^{2})$
 $\partial z = -\tau (1 + 3\frac{1}{2} + z^{2})$
Diff (2) Pontially (0) $-t - (n)$
 $2n \cdot \frac{1}{\alpha 2} = \frac{1}{\alpha}$
 $\int \frac{1}{\alpha 2} = \frac{1}{\alpha}$
 $\int \frac{1}{\alpha 2} = \frac{1}{\alpha}$

5

= 2 1 1 1 9 2+3+z 3+z+z z+3+z (R2=> R2+B) z+y z+z 3+z $= 2(2+3+2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 3+2 & 2+2 & 2+3 \end{vmatrix}$ Hence gradu, gradu, grades are coplarme vectors Show that U [a. J]= à where J= 2i+yj+zic and à 13 Constant Vector! Sol? a=qii+qj+qik, where Q1, q3, q3 Constants a. = qx+ gy+ gz $\nabla(\vec{a}.\vec{a}) = \left(\frac{i}{\partial 2} + j\frac{d}{\partial 2} + i\frac{d}{\partial 2}\right)\left(\frac{a_1a}{a_2} + \frac{a_2d}{a_3} + \frac{a_3d}{a_3}\right)$ $= q_i i + q_j i + q_i i$ = à. Find a Unit how vector normal to the surface × 23+y3+37yz=3 at (1,2,-1) $\phi = \chi^3 + g^3 + 3\chi g z - 3$ $\frac{\partial \varphi}{\partial k} = 3\lambda^{2} + 3y^{2}$, $\frac{\partial \varphi}{\partial y} = 3y^{2} + 3x^{2}$, $\frac{\partial \varphi}{\partial z} = 8xy^{2}$ San

-

6

¢.....

C >

Ca

C ...

-

C ...

r

3

R

A m

n.

* Find the angle between the Sunface 2+9+2=9 and $z = x^2 + y^2 - 3$ at point (2, -1, 2) 10 s solo Angle between two Sunface at a point is the angle between the normals to the Sunfaces at that point -Let $p = x^{2} + y^{2} + z^{2} - q = 0$ and $\psi_{3} = x^{3} + y^{3} - z - 3 = 0$ Then grad of = 221 + 2y + 2212 and grad y= 221 + 2y - 2 let n, = grad 10, at the point (2,-1,2) $\eta = 4i - 2j + 4i = (11 + 5) =$ B= grad 42 at point (2, -1.2) where the off in 21 $M_{g} = 4\hat{i} - 2\hat{j} - \hat{k}$ The vectors Ti, and Ti are along normal to the two Surface at (2,-1,2). If O & the angue between thur vectors, thin $C_{000} = \overline{n_1} \cdot \overline{n_2}$ $\overline{n_1} \cdot \overline{n_2}$

- The

In

1

1

-

9

1

4 4 2

and a

-

THE

-

-

-

-

4

$$= \frac{4(4) - 2(-2) + 4(-1)}{\sqrt{16 + 4 + 16}} = \frac{16}{6\sqrt{21}}$$

 $\varphi = Cos^{-1} \left(\frac{\varphi}{3J^{2}} \right)$

* Find the disciplical divivative of the function

$$f = r^2 - g^2 + s^2$$
 at the point P(1,s,s) in the discussion of
the PQ where Q is the point (S,0,4)
In what discussion of exits the man 7 Pind also the magnifult
 g^4 this max.
Sup we have $\nabla f = \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{$

The maximum value of this disactional divirance
$$\frac{1}{2}$$
 up of

$$= \overline{(2)^{3} + (u)^{2} + (u)^{2}} = \overline{1149} \qquad 2$$
** What is the greatest deate of increase of $u = xy^{2}$
if point (1.9, 3)?

$$u = xy^{2}$$

$$grad u = (\frac{1}{2}u + \frac{1}{2})\frac{1}{2}u + \frac{1}{2}\frac{3}{2}u = \frac{1}{2}(\frac{1}{2}+2\frac{1}{2}\frac{1}{2}+2xyz)^{2}$$

$$= y^{2}(\frac{1}{2}+2\frac{1}{2}\frac{1}{2}+2xyz)^{2}$$

$$= y^{2}(\frac{1}{2}+2\frac{1}{2}\frac{1}{2}+2xyz)^{2}$$
** If $\nabla \phi = (\frac{1}{2}-2xy^{2})\frac{1}{1}+(3+2xy-2\frac{1}{2}\frac{1}{2})\frac{1}{2}+(\frac{1}{2}\frac{3}{2}\frac{1}{3}\frac{1}{2})^{2}$

$$\frac{\xi \phi}{frid} \phi$$

$$\frac{\xi \phi}{2}$$

$$\frac{\xi \phi}{2} = \frac{1}{2}, \frac{1}{2}\phi^{2} = \frac{1}{2}\phi^{2}dy + \frac{\partial \phi}{\partial z}dz = d\phi$$

$$\frac{\partial \phi}{\partial z} = \frac{1}{2}, \frac{\partial \phi}{\partial z} + (3+2xy-2\frac{1}{2}\frac{1}{2})\frac{1}{2}+(6\frac{1}{2}-3\frac{1}{2}\frac{1}{2}\frac{1}{2})\frac{1}{2}(\frac{1}{2}\frac$$

- Caller

4 4 m

n a

L XO

A

the los

6

11

A AG

AL A

- 23

K S

-

-

a to

13

 $a = \pm \frac{20}{q}, b = \pm \frac{55}{q}, c = \pm \frac{59}{q}$

<u>XXX</u> Find the clivectional clusterive of $\mathcal{P} = 5\lambda^2 y - 5\beta^2 z + 5\frac{1}{3}z^2 x$ at point P(L1, 1) in the clivation of line $\frac{\gamma - 1}{2} = \frac{y - 3}{-3} = \frac{z}{1}$

 $Solⁿ = 5x^{2}y - 5y^{2}z + 5z^{2}z^{n}.$ $grad \phi = \hat{t} \frac{\partial \phi}{\partial t} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}.$ $= (10xy + 5z^{2})\hat{t} + (5x^{2} - 10y^{2})\hat{j} + (-5y^{2} + 5zx)\hat{k}.$ $= \frac{35}{9}\hat{t} - 5\hat{j} + \hat{k}.$ $Directional deuvative = (9rad \phi)\hat{a}.$ $= (35\hat{t} - 5\hat{j}) \cdot (\frac{3}{8}\hat{t} - \frac{3}{3}\hat{j} + \frac{1}{3}\hat{k}).$ $= \frac{35}{3} + \frac{10}{8} = \frac{35}{3} \cdot \frac{9}{3}.$

Y If the directional derivative of $\varphi = axy + by^2 z + czz$ at the point (1, 1, 1) has maximum magnitude 15 on the direction panalel to the line $\frac{\gamma-1}{2} = \frac{4-3}{-2} = \frac{z}{1}$, find the value of a, b and c. Selⁿ $\varphi = axy + by^2 z + czz$

$$Sel^{n} = axy + by^{2}z + c^{2}x$$

$$grad p = \hat{i} \frac{\partial p}{\partial x} + \hat{j} \frac{\partial q}{\partial y} + \hat{k} \frac{\partial p}{\partial z}$$

$$= (2axy + c^{2})\hat{i} + (ax + 2by^{2})\hat{j} + (by^{2} + 4czx)\hat{k}$$

$$= (2a + c)\hat{i} + (a + 2b)\hat{j} + (b + 2c)\hat{k} + a + (1, 1, 1)$$

Now clivectional derivative at is maximum along the normal to the sunface is along grad ø TIT

2

$$|\operatorname{grad} \phi| = \left[(2a+c)^{2} + (a+2b)^{2} + (b+2c)^{2} \right]$$

$$15^{-} = \left[(2a+c)^{2} + (a+2b)^{2} + (b+2c)^{2} \right]$$

$$(2a+c)^{2} + (a+2b)^{2} + (b+2c)^{2} = 225^{-} - 1$$

But we one given that chinectional clerivative is maximum on the diviction ponaled to the line $\frac{q-1}{2} = \frac{y-3}{2} = \frac{z}{1}$ i.e. ponaled to vector $2\hat{i}-2\hat{j}+\hat{k}$ tune,

$$\frac{2a+c}{2} = \frac{a+2b}{-2} = \frac{2c+b}{-2}$$

$$\Rightarrow aa+c= -a-2b \Rightarrow 3a+2b+c=0 -$$

$$\Rightarrow 2b+a=-4c-2b \Rightarrow a+4b+4c=0$$

By Cross-muchipuication we get

Gradient on Polar co-ordinates

-

$$\nabla \phi = \frac{\partial \phi}{\partial \alpha} \hat{e}_{\alpha} + \frac{1}{2} \frac{\partial \phi}{\partial \phi} \hat{e}_{\alpha}$$

Example If $\vec{\sigma}_{1} = \chi_{1}^{2} + \chi_{1}^{2} + \chi_{2}^{2} \epsilon$ then shows that (i) grad $\sigma_{1} = -\vec{\sigma}_{1}$ (I) grad $L = -\vec{\sigma}_{2}$ $\vec{\sigma}_{1}$ (I) grad $L = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) grad $L = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{1} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{2}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{2}$ $\vec{\sigma}_{3}$ (I) $\vec{\sigma}_{2} = -\vec{\sigma}_{3}$ $\vec{\sigma}_{3} = -\vec{\sigma}_{3}$ $\vec{\sigma}_{3} = -\vec{\sigma}_{3}$

Set (i) grad
$$a = \frac{\partial}{\partial n} (a) \hat{a} = \hat{a} = \frac{\partial}{\partial r} \hat{a}$$

(I) grad $\frac{1}{\partial r} = \frac{\partial}{\partial r} (\frac{1}{\partial r}) \hat{a} = -1 \hat{a} = -\frac{\partial}{\partial r} \hat{a}^{2}$
(II) grad $\frac{1}{\partial r} = \frac{\partial}{\partial r} (\frac{1}{\partial r}) \hat{a}^{2} = -1 \hat{a}^{2} = -\frac{\partial}{\partial r} \hat{a}^{2}$

Example Find
$$\nabla \left[\vec{\sigma} \right]^2$$

San $\nabla \left[\vec{\sigma} \right]^2 = \nabla \vec{\sigma}^2 = \frac{\partial}{\partial r} \left(\vec{\sigma}^2 \right) \hat{\vec{\sigma}}^2 = 2\vec{\sigma} \cdot \vec{\sigma}^2$

$$\frac{\text{Evaluate grad } e^{n^2}}{\circ \nabla e^{2n^2}} = \frac{\partial}{\partial n} \left(e^{n^2} \right) \hat{\sigma_n}$$

$$= e^{2n^2} \cdot 2 \hat{\sigma_n} \hat{\sigma_n}$$

$$= 2e^{n^2} \cdot n \cdot \frac{\partial}{\partial n}$$

$$= 2e^{n^2} \cdot n \cdot \frac{\partial}{\partial n}$$

$$= 2e^{n^2} \hat{\sigma_n} \cdot \frac{\partial}{\partial n}$$

$$= 2e^{n^2} \hat{\sigma_n} \cdot \frac{\partial}{\partial n}$$

Directional derivative = $\nabla(\frac{1}{2m}) \cdot \hat{\alpha}$ = $-\frac{n}{2m} \cdot \frac{\partial^2}{\partial x} \cdot \frac{\partial^2}{\partial x}$ = $-\frac{n}{2m} \cdot \frac{\partial^2}{\partial x} \cdot \frac{\partial^2}{\partial x}$ = $-\frac{n}{2m} \cdot \frac{\partial^2}{\partial x} = -\frac{n}{2m}$
$$\begin{array}{l} \# \Psi & \text{Show that } \text{grad } f(w) \times \vec{w} = \vec{\sigma} & (1) \\ & \text{grad } f(w) = \underbrace{\partial}_{\partial n} (f(w)) \cdot \vec{w} \\ & = f'(w) \cdot \vec{v} = f'(w) \cdot \underbrace{\partial \mathcal{F}}_{\mathcal{F}} \\ & \text{grad } f(w) \times \vec{w} = \underbrace{f'(w)}_{\mathcal{F}} (\vec{\omega} \times \vec{w}) = \vec{\sigma} \\ & \text{v.} \end{array}$$

 $\frac{d X}{d x} = \frac{\partial f}{\partial n} \frac{$

** Find the divectional derivative of $\frac{1}{2}$ in the direction of \mathcal{F} where $\mathcal{F} = \chi \hat{i} + J \hat{j} + z \hat{k}$

$$\underbrace{\underbrace{Se}}_{=}^{\bullet} \qquad \begin{array}{l} \varphi = \frac{1}{92} \\ \nabla \varphi = \nabla \frac{1}{94} = -\frac{1}{92} \frac{2}{94} = -\frac{92}{94} \\ \text{We at the Unif Vector in the Clauction of of} \\ \hline \alpha = \frac{1}{92} = \frac{92}{94} \\ \hline \alpha = \frac{1}{92} = \frac{92}{94} \\ \hline \alpha = \frac{1}{93} = \frac{1}{94} \\ \hline \alpha = \frac{1}{92} = \frac{1}{94} \\ \hline \alpha = \frac{1}{94} = \frac{1}{94}$$

Diregeno of a vector point function

The clivergence of a differentiable vector point function ? is denoted by cliv V and is defined as div V = H.V $= \left(\left[\begin{array}{c} \partial + f \\ \partial x \end{array} \right] \left[\begin{array}{c} \partial + \hat{x} \\ \partial z \end{array} \right]; \right]$ $= \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} + \begin{array}{c} j \\ 0 \\ 0 \\ 1 \end{array} + \begin{array}{c} i \\ 0 \\ 0 \\ 2 \end{array} \right) \cdot \left(\begin{array}{c} v_1 \\ i \\ 1 \end{array} + \begin{array}{c} v_2 \\ j \\ 1 \\ 1 \\ 1 \end{array} \right)$ $= \frac{\partial v_1}{\partial t} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} \qquad \begin{bmatrix} \dot{i} \cdot \dot{i} = J \cdot j = k \cdot \dot{k} = 1 \\ \dot{i} \cdot \dot{j} = f \cdot \dot{k} = k \cdot \dot{i} = 0 \end{bmatrix}$ Carl of a vector Point function The CULL (or Irotation) of a differentiable vector point function V Ps clenoted by CINL & and Ps clefined as Curl $\vec{V} = \nabla \times \vec{V} = (\hat{O} + \hat{J} \hat{O} + \hat{K} \hat{O}) \times \vec{V}$ $= \left(i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + i\hat{k}\frac{\partial}{\partial z}\right) \times \left(v_1\hat{k} + v_2\hat{j} + v_3\hat{k}\hat{k}\right)$ = 1000 VI x 000 VI x 000 VI x 000 VI x 000 VI $= \left(\begin{pmatrix} \frac{\partial v_1}{\partial t} & -\frac{\partial v_2}{\partial t} \end{pmatrix} + j \begin{pmatrix} \frac{\partial v_1}{\partial t} & -\frac{\partial v_3}{\partial t} \end{pmatrix} + k \begin{pmatrix} \frac{\partial v_2}{\partial t} & -\frac{\partial v_3}{\partial t} \end{pmatrix} \right)$

(19)

Example If
$$\vec{x} = x\hat{i} + y\hat{j} + z\hat{k}$$
, show that
(1) $div \vec{x} = 3$ (I) $curl \vec{x} = 0$
Sup (1) $cliv \vec{x} = \nabla \cdot \vec{x} = \frac{\partial(x)}{\partial t} + \frac{\partial(y)}{\partial y} + \frac{\partial(z)}{\partial z} = 1 + 1 + 1 = 3$
(I) $curl \vec{x} = \nabla x \cdot \vec{x} = \left| \hat{i} \quad \hat{j} \quad \hat{k} \\ \frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \\ x \quad y \quad z \right|$
 $= \hat{i} \left[\frac{\partial(z)}{\partial z} - \frac{\partial}{\partial z} \cdot y \right] + \hat{j} \left[\frac{\partial}{\partial z} (x) - \frac{\partial}{\partial x} \cdot z \right] + \hat{i} \left[\frac{\partial}{\partial z} (x) - \frac{\partial}{\partial y} \cdot z \right] + \hat{i} \left[\frac{\partial}{\partial z} (x) - \frac{\partial}{\partial y} \cdot z \right] + \hat{j} \left[\frac{\partial}{\partial z} (x) - \frac{\partial}{\partial y} \cdot z \right] + \hat{j} \left[\frac{\partial}{\partial z} (x) - \frac{\partial}{\partial y} \cdot z \right] = \hat{i} \left[\frac{\partial}{\partial z} (y) + \hat{j} (x) + \hat{k} (x) \right] = \hat{j}$

Example Find the dévergence and curl of the vector $\vec{V} = (2yz)\hat{i} + (3xy)\hat{j} + (2z^2 - y^2z)\hat{k}$ at point (3, -1, 1)

$$Sull Oliv \vec{V} = \nabla \cdot \vec{V}$$

$$= \left(\hat{i} \frac{\partial}{\partial t} + \hat{j} \frac{\partial}{\partial t} + \hat{k} \frac{\partial}{\partial z}\right) \cdot \left(\left(2 \cdot 8^{2}\right) \hat{i} + (8 \cdot \frac{3}{2}) \hat{j} + (3 \cdot \frac{3}{2} + \frac{3}{2}) \hat{k}\right)$$

$$= 8 \cdot 2 + 3 \cdot \frac{1}{2} + 3 \cdot 2 - 3 \cdot \frac{3}{2} = -1 + 13 + 4 - 1 = 14 \cdot (3 - 3 \cdot \frac{3}{2})$$

$$Cun \cdot \vec{V} = \left(\hat{i} - \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac$$

$$= \hat{i}(-3yz - 9) + \hat{j}(xy - \hat{z}) + \hat{i}c(5xy - xz) \quad (1)$$

$$= a\hat{i} - s\hat{j} - 4u\hat{c} \quad at \quad (+3, +, -)$$

$$(2)$$

$$= a\hat{i} - s\hat{j} - 4u\hat{c} \quad at \quad (+3, +, -)$$

$$(3)$$

$$= a\hat{i} - s\hat{j} - 4u\hat{c} \quad at \quad (+3, +, -)$$

$$(3)$$

$$= grad (\hat{z}^{2} + \hat{z}^{3} + \hat{z}^{3} - 3xyz - 4tun)$$

$$\vec{F} = grad (\hat{z}^{2} + \hat{z}^{3} + \hat{z}^{3} - 3xyz - 4tun)$$

$$\vec{F} = grad (\hat{p} = (\hat{t} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{c} \frac{\partial}{\partial z})(\hat{x}^{3} + \hat{y}^{3} + \hat{z}^{3} - 3xyz - 4tun)$$

$$= (3\hat{x}^{2} - 3xyz)\hat{t} + (3\hat{y}^{3} - 3xy)\hat{j} + (3\hat{z}^{3} - 3xy)\hat{c}$$

$$= (3\hat{x}^{2} - 3xyz)\hat{t} + (3\hat{y}^{3} - 3xy)\hat{j} + (3\hat{z}^{3} - 3xy)\hat{c}$$

$$div \vec{F} = \nabla \cdot \vec{F} = (\hat{t} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{c} \frac{\partial}{\partial z}) \cdot ((3\hat{t} - 3yz)\hat{t} + (4\hat{y}^{3} - 3xy)\hat{t} + (4\hat{y}^{3} - 3xy)\hat{t} + (3\hat{z}^{3} - 3xy)\hat{t} + (3\hat{$$

1

1

A REAL PROPERTY

Physical Interpretation of Diregence (22)

ER

6

SOT

10-1

-

5:

6.

C

C :

5:

Ci

G T

6 C

C.

-

A.

A

L

-

Consider the fluid having density P = P(0, y, z, t)and $\overline{V} = V(x, y, z, t)$ at a point (1, y, z) at time t.

Let $\vec{\mathbf{V}} = e\vec{\mathbf{v}}$, thun $\vec{\mathbf{V}}$ les a Vector having the same clirection as $\vec{\mathbf{v}}$ and magnitude $e[\vec{\mathbf{v}}]$. It is known flux.

Its déduction gives the déduction of the fluid flow. and its magnitude gives the mass of the fluid Crossing ber Unit tême a Unit area placed perpendicular to the direction of flow

> SZ P

Vy

to mit in . cor line +

Fa Vy+sy

Consider the motion of the fluid having Velocity $\vec{V} = V_x \hat{i} + V_y \hat{j} + V_z \hat{k}$ at a point P(z, y, z), Consider a Small parallelopiped with edge Sz, Sy, Sz parallel to the axes with one of its Corners at P.

The mass of fluid entering through the face Fi per Unit time B Vysrsz and that flowing out through the opposite face Fz B Vy 5252 = (Vy to 2454) Sroz by Tember Scries. The net decrease on the mars of flued flowing. accoss these two faces.

$$V_y + \frac{\partial v_y}{\partial y} s_y - V_y s_x s_z = \frac{\partial v_y}{\partial y} s_x s_y s_z$$

2

111111

6

5

9

Similary, Considering the Other two pairs of faces_ we get the total decrease on the mass of fund. chile the ponaleropied for Unit time = (<u>Over + Over + O</u>

Dividing this by the volume $Sx_Sy_Sz_of$ the ponallopiped, we have the state of loss of fluid pa Unit time $\frac{\partial v_x}{\partial z} + \frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial z} = \operatorname{div} \overline{v}$

Hence div V gives the state of outflow per Unit Volume at a point of the fluid.

Note If cler V = 0 everywhere on Some Origin R of Space, then V is Carled Solenoidal Vector point function.

manis dues grant tott date

Physical Interpretation of Curl

Consider a vigid body rotating about a find and through O with Uniform angular velocity $\overrightarrow{W} = \omega_1 \widehat{i} + \omega_2 \widehat{j} + \omega_3 \widehat{k}$

(24)

The velocity \vec{V} of any point P(x,y,z) on the body is given by $\vec{V} = \vec{w} \times \vec{v} \cdot$, where $\vec{v} = x\hat{i} + y\hat{j} + z\hat{i}\hat{c}$ is the position vector of P.

$$\vec{V} = \vec{\omega} \times \vec{\omega} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ \omega_1 & \omega_3 & \omega_3 \\ 2 & y & \kappa \end{vmatrix}$$

$$= (\omega_{3}z - \omega_{3}y) \hat{i} + (\omega_{3}\gamma - \omega_{1}z) \hat{j} + (\omega_{1}y - \omega_{2})\hat{k}$$

$$= (\omega_{1}z - \omega_{3}y) \hat{i} + (\omega_{3}\gamma - \omega_{1}z) \hat{j} + (\omega_{1}y - \omega_{2})\hat{k}$$

$$= (\omega_{1}z - \omega_{3}y) \hat{i} + (\omega_{3}z - \omega_{1}z) \hat{j} + (\omega_{3}z - \omega_{3})\hat{k}$$

$$= (\omega_{1}z - \omega_{3}y) \hat{i} + (\omega_{3}z - \omega_{3})\hat{k}$$

$$= (\omega_{1}z - \omega_{1}z) \hat{i} + (\omega_{3}z - \omega_{3})\hat{k}$$

$$= (\omega_{1}z - \omega_{1}z) \hat{i} + (\omega_{3}z - \omega_{3})\hat{k}$$

$$= (\omega_{1}z - \omega_{1}z) \hat{i} + (\omega_{3}z - \omega_{3})\hat{k}$$

$$= (\omega_{1}z - \omega_{1}z) \hat{i}$$

Thus, the angular velocity at any point is equal to the half the curl of the linear verocity at that point of the body Note If CURL V=3, from VB Called Borrotations verter.

Vector Incentite
1. Chi(grad g) =
$$\nabla / \beta$$

Proof div(grad g)= $\nabla . (\nabla g)$
 $= (1 \pm 1 \pm 1 \pm 2) \cdot (1 \pm 1 \pm 2 \pm 2) \cdot (1 \pm 2 \pm 1 \pm 2 \pm 2) \cdot (1 \pm 2 \pm 1 \pm 2 \pm 2) \cdot (1 \pm 2 \pm 1 \pm 2) \cdot (1 \pm 2 \pm 2) \cdot (1 \pm 2)$

$$\begin{array}{c} \underbrace{(4)}{(2uu l \vec{v})} = \nabla \cdot (\nabla x \vec{v}) = 0 \\ \hline \\ \underbrace{(4)}{(2uu l \vec{v})} = \nabla \cdot (\nabla x \vec{v}) = 0 \\ \hline \\ \underbrace{(4)}{(2uu l \vec{v})} = \nabla \cdot (\nabla x \vec{v}) = 0 \\ \hline \\ \underbrace{(4)}{(2uu l \vec{v})} = \underbrace{(1)}{(1 + v_0)} + \underbrace{(1 + v_0)}{(2u + v_0)} + \underbrace{(1 + v_0)}{(2$$

١

(5) If
$$\vec{a}$$
 is a vector function and \vec{u} \vec{B} a scalar
function thun
 $\vec{c}(unl(u\vec{a}) = u \cdot cunl \vec{a} + (qradu) \times \vec{a}$
Proof $cunl(u\vec{a}) = \sum i \times \frac{\partial}{\partial t} (u\vec{a})$
 $= \sum i \times (u \cdot \frac{\partial \vec{a}}{\partial t} + \frac{\partial u}{\partial t})$
 $= u (\sum i \times \frac{\partial \vec{a}}{\partial t}) + \sum i \cdot \frac{\partial u}{\partial t} \times \vec{a}$
 $= u \cdot cunl \vec{a} + (qradu) \times \vec{a}$
S $chir(\vec{a} \times \vec{B}) = \vec{B} \cdot cunl \vec{a} - \vec{a} \cdot cunl \vec{B}$
Proof $chi (\vec{a} \times \vec{B}) = \sum i \cdot \sqrt{\frac{\partial \vec{a}}{\partial t}} + \vec{a} \times \frac{\partial \vec{B}}{\partial t}$
 $= \sum i \cdot (\frac{\partial \vec{a}}{\partial t} \times \vec{b}) - \sum i \cdot \frac{\partial \vec{B}}{\partial t} \times \vec{a}$
 $= \sum i (\frac{\partial \vec{a}}{\partial t} \times \vec{b}) - \sum i \cdot \frac{\partial \vec{B}}{\partial t} \times \vec{a}$
 $= \sum (i \cdot \sqrt{\frac{\partial \vec{a}}{\partial t}}) \cdot \vec{b} - \sum (i \cdot \sqrt{\frac{\partial \vec{B}}{\partial t}}) \cdot \vec{a}$
 $= \sum (i \cdot \sqrt{\frac{\partial \vec{a}}{\partial t}}) \cdot \vec{b} - \sum (i \cdot \sqrt{\frac{\partial \vec{B}}{\partial t}}) \cdot \vec{a}$
 $= \sum (unl \vec{a}) \cdot \vec{B} - (cun \vec{B}) \cdot \vec{a}$
 $= \vec{B} \cdot cunl \vec{a} - \vec{a} \cdot cunl \vec{B}$

 $Curr(\underline{a},\underline{r}) = \underline{a} \operatorname{div} \underline{r} - \underline{p} \operatorname{div} \underline{a} + (\underline{p},\underline{a})\underline{a} - (\underline{a},\underline{a})\underline{s}$ 7) Prov $Cunl(\vec{a} \times \vec{b}) = \overline{\vec{c}} \stackrel{\circ}{(} \times \stackrel{\circ}{\partial} (\vec{a} \times \vec{b})$ $= \Xi \left(\frac{\partial a}{\partial x} + \frac{\partial a}{\partial x} + \frac{\partial B}{\partial x} \right)$ $= \Xi i \times (\overline{\partial a} * \overline{b}) + \Xi i \times (\overline{a} * \overline{\partial B})$ $= \sum \left[(\hat{i}, \hat{b}) \frac{\partial \hat{a}}{\partial t} - (\hat{i}, \frac{\partial \hat{a}}{\partial t}) \hat{b} \right] + \sum \left[(\hat{i}, \frac{\partial \hat{b}}{\partial t}) \hat{a} - (\hat{c}, \hat{a}) \frac{\partial \hat{b}}{\partial t} \right]$ $= \overline{\Sigma}(\overline{B}, \widehat{i}) \frac{\partial \overline{\alpha}}{\partial t} - (\overline{\Sigma}(\widehat{i}, \frac{\partial \overline{\alpha}}{\partial t}) \overline{f} + \overline{\Sigma}(\widehat{i}, \frac{\partial \overline{B}}{\partial t}) \overline{\alpha} - \overline{\Sigma}(\overline{\alpha}, \widehat{i}) \frac{\partial \overline{B}}{\partial t}$ $= \left(\vec{b} \cdot \vec{z} \cdot \vec{\partial}_{\sigma r}\right) \vec{a} \cdot \vec{b} div \vec{a} + \vec{a} div \vec{b} - \left(\vec{a} \cdot \vec{z} \cdot \vec{\partial}_{\sigma r}\right) \vec{b}$ = (B, v) 2 - Baiva + 2 avb - (2 ... v) B = à div B - B divà + (B. V) - (2. V)B

$$\begin{aligned} \widehat{\otimes} \quad \operatorname{Cunl}(\operatorname{Cunl}\overrightarrow{v}) &= \operatorname{grad}(\operatorname{griv}\overrightarrow{v}) - \operatorname{v}^{2}\overrightarrow{v} \\ & \operatorname{Proof} : \quad \operatorname{Lut} \quad \overrightarrow{v} &= \operatorname{v_{1}} \widehat{i} + \operatorname{v_{3}} \widehat{j} + \operatorname{v_{4}} \widehat{k} \\ & \operatorname{Hum} \quad \operatorname{Cunl} \overrightarrow{v} &= \left| \begin{array}{c} \widehat{i} & \widehat{j} & \widehat{k} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \nabla & \overline{v} & \overline{v} & \overline{v} \\ & -\widehat{v} & \overline{v} & \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & \partial \overline{v} & \partial \overline{v} & \partial \overline{v} \\ & = \overline{z} \widehat{i} \left[\begin{array}{c} \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ & = \overline{z} \widehat{i} \left[\begin{array}{c} \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{2}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ \partial \overline{v} & \partial \overline{v} \\ \partial \overline{v} & - \frac{\partial v_{1}}{\partial v} \\ & - \frac{$$

U

1

Ņ

the star and the

No.

F

the state

2

2

b

Example *: A flued motion is given by

$$\overrightarrow{V} = (y+z) \overrightarrow{e} + (z+z) \overrightarrow{j} + (z+y) \overrightarrow{k}$$

Is the motion for corretational ? (So find the velocity bottential
Sup we have $\overrightarrow{V} = (y+z) \overrightarrow{e} + (z+y) \cancel{f} + (z+y) \cancel{k}$
(1) The motion is possible find the velocity bottential
(1) The motion is possible find the velocity bottential
 (1) The motion is possible find the velocity bottential
 (1) The motion is possible find the velocity bottential
 (1) The motion is possible find the velocity bottential
 (1) The motion is possible find the velocity bottential
 (1) The motion is possible find the velocity bottential
 (1) The motion is possible for $(2+z)$ $-\overrightarrow{d} = (3+z)$
 $(2+z) - \overrightarrow{d} = (3+z)$

$$d\phi = \vec{v} \cdot d\vec{z}$$

$$= \begin{bmatrix} (y+z) \hat{l} + (z_1x) \hat{j} + (n_1y) \hat{k} \end{bmatrix} \cdot \begin{bmatrix} dx \hat{l} + dy \hat{j} + dz \hat{k} \end{bmatrix}$$

$$= \begin{bmatrix} (y+z) \hat{l} + (z_1x) \hat{j} + (n_1y) \hat{k} \end{bmatrix} \cdot \begin{bmatrix} dx \hat{l} + dy \hat{j} + dz \hat{k} \end{bmatrix}$$

$$= (\frac{y}{2} + z) \hat{d} + (z_1x) dy + (n_1y) dz$$

$$= (\frac{y}{2} + z) \hat{d} + (z_1x) + d(z_2y)$$
Integrating $\Rightarrow \phi = 2y + zx + yz + C$

$$= d(\frac{y}{2}x) + d(z_1x) + d(z_2y)$$
Integrating $\Rightarrow \phi = 2y + zx + yz + C$

$$(1) d\hat{l} \quad (\vec{z} \quad 0) = 3\beta + \vec{s} \cdot grad \phi \quad (1) d\hat{l} \quad (\vec{z} \quad 0) = 3\beta + \vec{s} \cdot grad \phi \quad (1) d\hat{l} \quad (\vec{z} \quad 0) = 3\beta + \vec{s} \cdot grad \phi \quad (1) d\hat{l} \quad (\vec{z} \quad 0) = 3\beta + \vec{s} \cdot grad \phi \quad (1) d\hat{l} \quad (2) = y d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (2) \quad d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (\vec{p} \cdot \vec{s}^{2}) = \phi d\hat{l} \quad \delta \vec{z} + \vec{z} \cdot grad \phi \quad (1) d^{1} v \quad (2) = 2\hat{v} + \vec{z} \cdot grad \phi \quad (2) \quad$$

$$\frac{\partial h}{\partial t} + \frac{\partial h}{\partial t} = 0.$$
Hence or othousine evaluate $\nabla x \left(\frac{\partial h}{\partial t}\right)$
Sold Here $\partial t^2 = t^2 + y^2 + z^2 \Rightarrow t \frac{\partial h}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial a}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial h}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial h}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial h}{\partial t} = 2u \Rightarrow \frac{\partial h}{\partial t} = \frac{2}{\partial t}$
 $\frac{2 \partial h}{\partial t}$
 $\frac{2 \partial h}{\partial t} =$

S

1

Prove that vietor flow of is constational
Sup Cimi
$$[f(\sigma), \sigma] = f(\sigma)$$
 cun $\sigma^2 + [grad flow] x \sigma^2$
 $= \sigma^2 + f'(\omega) \& x \sigma^2$ (Cun $\sigma^2 = \sigma^2$)
 $= \frac{f'(\omega)}{\omega} (\sigma^2 x \sigma^2) = \sigma^2$ ($\sigma^2 + \sigma^2 = \sigma^2$)
(I) Prove that $\sqrt[3]{f(\sigma)} = f'(\omega) + \frac{3}{\alpha} f'(\omega)$
Hume evaluate $\sqrt[3]{(\log \alpha)}$ if $\sigma = (\frac{1}{2} + \frac{\beta}{2} + \frac{1}{2})^{\frac{1}{2}}$.
Sup Grad flow) = f'(\omega) $\sigma^2 = \frac{1}{\sigma_1} f'(\omega) \sigma^2$
 $= \frac{f'(\omega)}{\alpha} dv \sigma^2 + grad [\frac{f'(\omega)}{\alpha}] \cdot \overline{v}^2$
 $= \frac{3}{\sigma_2} f'(\omega) + [\frac{\alpha}{\alpha} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_2} f'(\omega) + [\frac{\alpha}{\sigma} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + [\frac{\alpha}{\sigma} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + [\frac{\alpha}{\sigma_2} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + [\frac{\alpha}{\sigma_2} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + \frac{3}{\sigma_1} f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + \frac{3}{\sigma_1} f'(\omega) - f'(\omega) - f'(\omega)] \sigma^2$
 $= \frac{3}{\sigma_1} f'(\omega) + \frac{3}{\sigma_1} f'(\omega) - f'(\omega) - f'(\omega)}{\sigma_2} = \frac{1}{\sigma_1} - \frac{1}{\sigma_1} + \frac{3}{\sigma_2} (\frac{1}{\sigma_1}) = \frac{1}{\sigma_1} - \frac{1}{\sigma_1} + \frac{1}{\sigma_2} (\frac{1}{\sigma_1}) = \frac{1}{\sigma_1} - \frac{1}{\sigma_1 + \sigma_2} + \frac{1}{$

F Show that the Vector field $\vec{F} = \vec{\sigma}_{1}^{2}$ B Pourotational as well as Solenoi'dal find the scalen potential Sul? For the vector field if to be locastational, Cur =3 We know that Curl (ua) = u curia + (gradu) xa $\operatorname{Cun}\left(\frac{1}{93}\operatorname{Gr}\right) = \frac{1}{93}\operatorname{Cun}\operatorname{Gr} + \left(\operatorname{grad} \frac{1}{93}\right) \times \operatorname{Gr}$ Contaco $= \underbrace{L}_{0,3}(\vec{0}) + \underbrace{-3}_{0,4}(\vec{1}) \times \vec{1}$ $= \vec{\partial} - \frac{3}{5} (\vec{\sigma} \times \vec{\sigma}) = \vec{\partial} - \vec{\partial} = \vec{\delta}$ Hence vector field & ooro tational Argan, for vector field ? to be solunoidal div ?= 0 We know that div (U2) = U diviz + 2, grad k. div ($\frac{(32)}{(33)}$ = 1 div or + or grad (1) $= \frac{3}{93} + \frac{3}{97} \left(\frac{-3}{97} \cdot \frac{3}{97} \right) \quad [div \partial z = 3]$ 13 S. B $\frac{3}{2} = \frac{3}{100} = \frac{3}{2} = \frac{3}{2} = \frac{3}{100} = \frac{3}{100}$ I 0 Flence Vector Fied & B SolenoidaL. 2 Now let P= Vp when p B Scalon potential 戸、はえーレタ・はえ J. P. dR = dø

$$d\emptyset = \frac{(1^{1} + 3^{1} + 2i^{2})}{(1^{2} + y^{3} + z^{2})^{3} 4} \cdot (dt \hat{t} + dy \hat{j} + dz \hat{k})$$

$$= \frac{1}{2} \cdot (dt + y \cdot dy + z \cdot dz)$$

$$= \frac{1}{2} \cdot (dt + y \cdot dy + z \cdot dz)$$

$$(1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

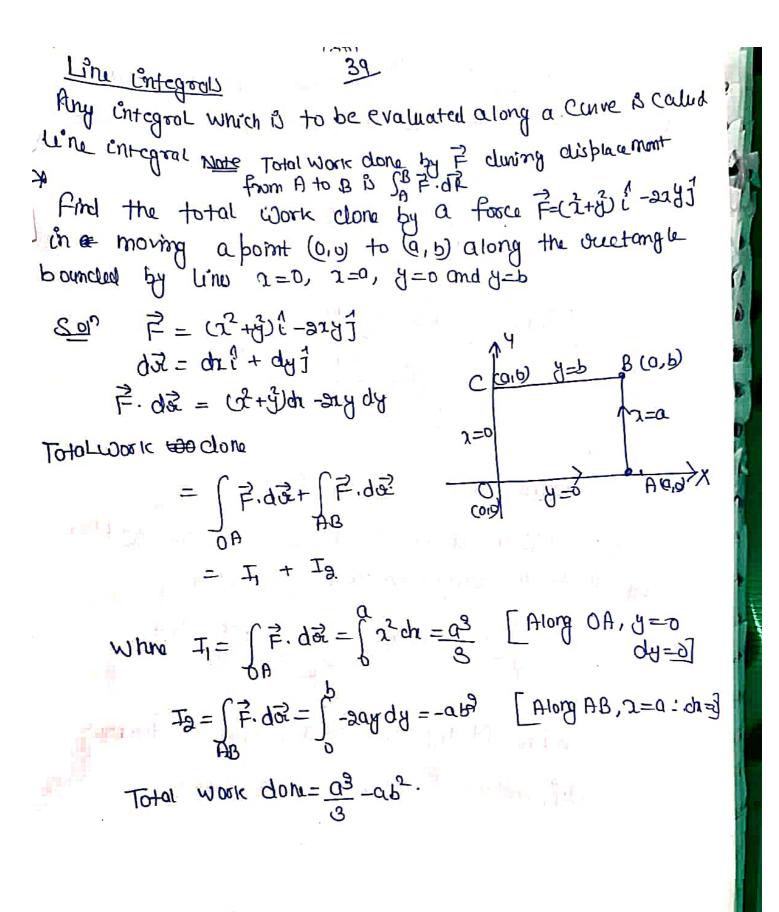
$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2})^{3} \frac{1}{4}$$

$$= \frac{1}{3} \cdot (1^{2} + y^{3} + z^{2}$$

* Find the constants a, b, c bo that $\vec{F} = (1+2ytaz)\hat{i}$ + $(bx-3y-z)\hat{j} + (4x+cy+3z)\hat{k}$ is constational. $\vec{F} = grad \phi$ Show that $\phi = \frac{\gamma^2}{2} - \frac{3\gamma^2}{2} + z^2 + 2xy + 4xz - 4z$.

* Show that $\vec{A} = (628 + 2)\hat{i} + (32^2 - 2)\hat{j} + (32^2 - 2)\hat{k} = 8$ Pourotational. Find the Velocity potential & such that A=vø 53 A flued motion is given by V = (ysinz-sinz)i + X 13 Er sinz+2yz) f + (2y coz+y) k. Is the motion Poorotational ? If So, find the Velocity potential. Line Integral Question The second A vector field is given by F = (siny) & + x (1+ covy) J 1 Evaluate the line integral over the Circular bath gives by $\chi^2 + y^2 = a^2$, z = 0Put $x = a \cos \theta$, $\theta = 0 \cdot \sin \theta = 0 \to 0 + 0 \cdot 2 \pi$ Sel Since the ponticle moves in ry-plan, z=0 R=2(+ 87 => dot=dri+dyj $\oint \vec{F} \cdot d\vec{x} = \oint \left[\text{Sing} \left(\hat{i} + \tau \left(1 + \cos \theta \right) \, \hat{j} \right) \left[dr \left(1 + d \eta \, \hat{j} \right) \right] \right]$ ę. $\widehat{\mathcal{O}}$ = cf sing dr + a (1+ Cosy) dy Ð 2 === f[(sing dx + x covy dy)+x dy] 0 = fod(r siny) + grdy U = I'd [acos & sim (a sime) + I a cos & a costedt 1 D = $\left[\alpha \cos \Theta \sin(\alpha \sin \theta) \right]^{n} + \alpha^{2} \int^{n} \cos \Theta dt$ 1 $= \frac{\alpha^{2}}{2} \int_{0}^{2\pi} (1 + \cos 2\theta) d\theta = \frac{\alpha^{2}}{2} \left[\frac{4 + \sin 2\theta}{2} \right]_{0}^{2\pi}$ $= \frac{\alpha^{2}}{2} (2\pi) = \pi \alpha^{2} \theta$



En If $\vec{F} = 8xy\hat{c} - y\hat{c}\hat{j}$, evaluate $\int \vec{F} \cdot d\vec{\sigma}\hat{c}$, where \vec{C} is the cure of the penabola $y = 2a^2$ from (0,0) to (0,2)

7

7

.

.....

.

۲

1

10

3

5

5

 $\vec{F} \cdot d\vec{a} = 3xydr - y^2 dy$ = $3x(2x^2) dx - 4x^2 d 2(2x)dx$) = $6x^3 dr - 16x^2 dx$ $\int \vec{F} \cdot d\alpha = \int (6x^3 dr - 16x^2) dy$ = $\left[\frac{6x^3}{4} - \frac{16x^6}{6}\right]_{0}^{1} = \frac{3}{2} - \frac{3}{2} = -\frac{7}{6}$

<u>T</u>f C is a sugular Closed Curve in the 29-plane Tf C is a sugular Closed Curve in the 29-plane and R be the suggion bounded by C, then $\int (Mdn + Ndy) = \int (\frac{\partial N}{\partial x} - \frac{\partial N}{\partial y}) dx dy$ R be MC(1,9) and NC(1,9) one Continuously differentiable Function inside and on C.

* If C B a Simple Closed Clure in the
2y-plane not Containing the Origin, evaluate
$$\int \vec{F} \cdot d\vec{x}$$

When $\vec{F} = -\frac{iy}{4} + jx$
 x^{2+y^2}
Set $tr \vec{F} = -N\hat{t} + N\hat{j}$ then
 $\vec{F} \cdot d\vec{\sigma} = (N\hat{t} + N\hat{j}) (dx\hat{t} + dy\hat{j}) = -Ndx + Ndy$
For given \vec{F} , we have
 $N = -\frac{d}{x^{2+y^2}}, N = \frac{\pi}{x^{2+y^2}}$
 $\frac{\partial N}{\partial t} = (x^{2+y^2})(-t) - (-t)(2y) = -\frac{y^2 - x^2}{(x^2 + y^2)^2}$
 $\frac{\partial N}{\partial t} = (x^{2+y^2})(-t) - xy(t) = -\frac{q^2 - x^2}{(x^2 + y^2)^2}$
 $\frac{\partial N}{\partial t} = (x^{2+y^2})(-t) - xy(t) = -\frac{q^2 - x^2}{(x^2 + y^2)^2}$
 $\frac{\partial N}{\partial t} = (x^{2+y^2})(-t) - xy(t) = -\frac{q^2 - x^2}{(x^2 + y^2)^2}$
 $\frac{\partial N}{\partial t} = \frac{2}{(y^2 + y^2)^2} = -\frac{(x^2 - x^2)}{(x^2 + y^2)^2}$
Hence from $Chec^{1/2}$ theorem, circ have.
 $\int \vec{F} \cdot d\vec{\sigma} \hat{t} = \int (ndt + Ndy) = \int \int \frac{\partial N}{\partial t} - \frac{\partial H}{\partial t} dt dy$
 $= 0$

Ex A vector field
$$\overrightarrow{F}$$
 is given by $\overrightarrow{F} = \operatorname{sing} (i+x\alpha+\cos n)$
Evaluate the integral $[\overrightarrow{F} \cdot d\overrightarrow{a}]$ where C is the Circular
both Given by $x^2 + y^2 = a^2$
Sulⁿ $[\overrightarrow{F} \cdot d\overrightarrow{a} = \int (\operatorname{Sing} i + x \operatorname{Citcoxy}) dy]$
 $= \int [\operatorname{Siny} dx + \Im \operatorname{Citcoxy}] dx dy$ by Gracen thm.
 $= \int [(1+\cos y) - \cos y] dx dy = \int [dx dy]$
 $= A = \operatorname{Crice} - \frac{\partial}{\partial y} dx dy = \int [dx dy]$
 $= \Pi (\operatorname{Crashiv})^2 = \pia^2$.
 \overrightarrow{F} Apply Gracen² theorem to evaluate $\int [(2x^2 - i)dx + (x^2 + 3)dy]$
where C is the boundary of the Grace $2\pi - ix^2$.
 \overrightarrow{F} $d\overrightarrow{c} = (\pi \ell + N j^2) (dx \ell + dy j^2) = N dt + N dy$
 $\overrightarrow{F} = 3i \operatorname{Crice} \overrightarrow{F}, we have
 $M = 2x^2 - y^2$, $N = 7^2 + y^2$
 $-\frac{\partial N}{\partial h} = -23$, $\frac{\partial N}{\partial h} = 3x$.$

$$\int \left[\frac{1}{2} \cdot ds^{2} - \int \left[(2x^{2} - y^{2}) ds + (x^{2} + y^{2}) dy \right] \right]$$

$$= \int \left[(2x + 2y) dx dy \right]$$

$$= \lambda \int_{x=0}^{q} \int_{x=0}^{q-x^{2}} (x + y) dx dy$$

$$= \lambda \int_{x=0}^{q} \left(xy + \frac{q^{2}}{2} \right) \int_{x=0}^{q-x^{2}} dx.$$

$$= \lambda \int_{x=0}^{q} (xy + \frac{q^{2}}{2}) \int_{x=0}^{q-x^{2}} dx.$$

$$= \lambda \int_{x=0}^{q} (x^{2} + \frac{q^{2}}{2}) \int_{x=0}^{q-x^{2}} dx.$$

$$= \lambda \int_{x=0}^{q-x^{2}} dx.$$

Using Green's theorem
$$\int (2^{2}y d1 + 3^{2}dy) \xrightarrow{W} Where C B$$
 the
boundary clustribed Countre Clathesize of the triangle.
With Verfess $(0:9) \cdot (1,9) \cdot (1,1)$.

$$\underbrace{Su^{B}}_{F} \left[(1^{2}y d1 + 3^{2}dy) = \int \int \frac{1}{dt} x^{2} - \frac{1}{dt} (3^{2}y) d1 dy \\= \int \int \frac{1}{dt} x^{2} - \frac{1}{dt} (3^{2}y) d1 dy \\= \int \int \frac{1}{dt} (2x - 3^{2}) dt dy \\= \int (2x - 3^{2}) dt dy \\= \int (2x - 3^{2}) dt dx \\= \int (2x - 3^{2}) dt dy \\= -2 (-3^{2})^{2} (2x - 3^{2}) dx dy \\= -2 (-3^{2})^{2} (2x - 3^{2}) dx$$

Verification of Theorem.
For this purpose, let us evaluate the given line
integral clinearly

$$\int_{C} (z^{2} \sin y \, dx + \overline{e}^{1} \cos y \, dy)$$

$$= \int_{OA} (\overline{z}^{2} \sin y \, dx + \overline{e}^{1} \cos y \, dy)$$

$$+ \int_{AB} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{BD} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{BD} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{BD} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{BD} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$+ \int_{C} (\overline{e}^{2} \sin y \, dx + \overline{e}^{2} \cos y \, dy)$$

$$= O + \int_{C} \overline{e}^{2} \cos y \, dy + \int_{D} \overline{e}^{2} \, dx + \int_{C} \cos y \, dy$$

$$= \overline{e}^{T} (\sin y)_{D}^{T_{2}} + (-\overline{e}^{2})_{D}^{0} + (\sin y)_{T_{2}}^{0}$$

$$= \overline{e}^{T} - (1 - \overline{e}^{T}) + (-1)$$

$$= 2 (\overline{e}^{T} - 1)$$
Hence Could s³ theore in Verified

Sunface Integrals

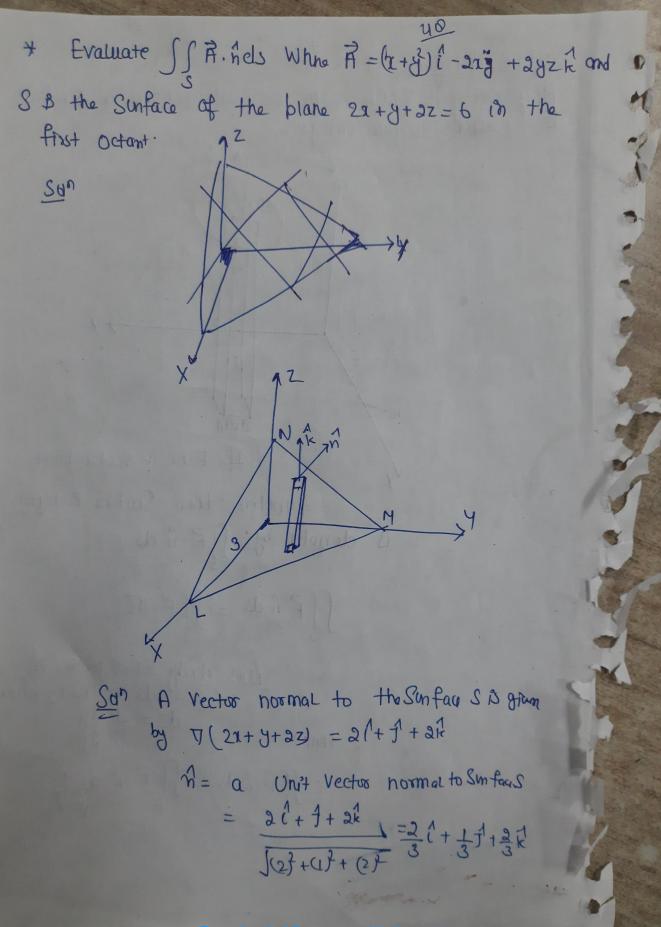
Any integral Which is to be evaluated over a sinface B called Sunface integral.

47

Andr If F be a vector point Function then Sunface Entegral B clanoted by $\ensuremath{ J = \ } \hat{\ensuremath{ F \cdot \hat{n} \ } ds}$ $\ensuremath{ J = \ } \hat{\ensuremath{ F \cdot \hat{n} \ } ds}$

> Now dxdy = projection ofds on the xy-plane. $<math>ds = \frac{dxdy}{10}$

than



$$\begin{aligned} \hat{k} \cdot \hat{h} &= \hat{k} \cdot \left(\frac{3}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{3}{3} \frac{k}{3} \right) = \frac{3}{3} \\ \iint \vec{R} \cdot \hat{h} \, ds = \iint \vec{R} \cdot \hat{h} \frac{drdy}{1\hat{k} \cdot \hat{h}} \end{aligned}$$

$$\begin{aligned} & \text{Where } R \text{ B the Projection } \vec{q} \text{ S ce triangle L(NN OD)} \\ & \text{the } \gamma y + \text{plate. The Jugico } R \text{ i.e. triangle OLN B} \\ & \text{bounduld by } \gamma - \alpha nis, y \alpha no \ dnd \ dne \ 2n + y = 6, z = 0 \\ & \text{Nows} \quad \vec{R} \cdot \hat{h} = \left[(1 + \frac{3}{3}) \left(\frac{1}{2} - \frac{3}{2} + \frac{1}{2} + \frac{3}{2} \frac{1}{2} \right) \right] \\ &= \frac{3}{3} (1 + \frac{3}{3}) - \frac{3}{3} n + \frac{4}{3} 3z \\ &= \frac{3}{3} y^3 + \frac{4}{3} 3z = \frac{3}{3} y^3 + \frac{4}{3} 3 \left(\frac{6 - 3n - y}{3} \right) \\ &= \frac{3}{3} y \left(3 + 6 - 3n - y \right) \\ &= -\frac{4}{3} y \left(3 + 6 - 3n - y \right) \\ &= -\frac{4}{3} y \left(3 + 6 - 3n - y \right) \\ &= -\frac{4}{3} y \left(3 + 6 - 3n - y \right) \\ &= -\frac{4}{3} y \left(3 - n \right) \\ &\text{Home } \iint \vec{R} \cdot \hat{h} \, ds = \iint \vec{R} \cdot \hat{h} \frac{drdy}{1k \cdot \hat{h}} \\ &= \int_{0}^{3} \frac{6}{9} (3 - n) \left[-\frac{y^2}{3} \right]_{0}^{6} dx . \\ &= \int_{0}^{3} \frac{6}{9} (3 - n) \left[-\frac{y^2}{3} \right]_{0}^{6} dx . \\ &= \int_{0}^{3} \frac{6}{9} (3 - n) \left[-\frac{y^2}{3} \right]_{0}^{6} dx . \\ &= -\frac{4}{9} \int_{0}^{3} (9 - n) (6 - 2n)^2 dx . \\ &= -\frac{4}{9} \int_{0}^{3} (9 - n) (6 - 2n)^2 dx . \\ &= -\frac{4}{9} \int_{0}^{3} (9 - n) (6 - 2n)^2 dx . \end{aligned}$$

$$\widehat{R} \cdot \widehat{h} = (z, i + x, j - sy^{2}z) \quad (-\frac{1}{4}x, i^{4} + \frac{1}{4}y, j^{2}) = -\frac{1}{4}x \cdot (2tz)$$
Huna
$$\iint_{R} \widehat{h} \cdot \widehat{h} \, ds = \iint_{R} \widehat{h} \cdot \widehat{h} \frac{dy \, dz}{dz}$$

$$= \iint_{R} \frac{1}{4}x \cdot (4+x) \frac{dy \, dz}{dy \, dz}$$

$$= \iint_{R} \frac{1}{4}x \cdot (4+x) \frac{dy \, dz}{dy \, dz}$$

$$= \iint_{R} (\frac{1}{4}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) dz$$

$$= \iint_{R} (\frac{1}{4}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) dz$$

$$= \iint_{R} (\frac{1}{2}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) dz$$

$$= \int_{0}^{\infty} (\frac{1}{4}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) dz$$

$$= \int_{0}^{\infty} (\frac{1}{4}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) \frac{1}{4} dz$$

$$= \int_{0}^{\infty} (\frac{1}{4}+z) \frac{1}{4} dz = \int_{0}^{\infty} (\frac{1}{4}+z) \frac{1}{4} dz$$

$$= \int_{0}^{1} \int_{0}^{\infty} dz dz$$

$$= \int_{0}^{1} \int_{0}^{1} dz dz$$

$$= \int_{0}^{3} \int_{0}^{2-n} 2x (4-2x-2y) dy dx$$

$$= \int_{0}^{3} \left[4x (2-n) y - 2n y^{2} \right]_{0}^{3-n} dx$$

$$= \int_{0}^{3} \left[2x (2-n) y - 2n y^{2} \right]_{0}^{3-n} dx$$

$$= \int_{0}^{3} \left[2x (2-n) y - 2n y^{2} \right]_{0}^{3} dx$$

$$= \int_{0}^{3} \left[2x (2-n) y - 2n y^{2} \right]_{0}^{3} dx$$

1

31

01

$$= 2\left(\frac{\partial}{\partial} - \frac{32}{3} + 4\right) = \frac{\partial}{3}$$

Crauss - Divergence Theorem (Relation between Sunface contegral and volume integral) If F is a vector point function having Continuous first Order Pontial derivatives on the orlgion V bounded by a closed Sunface S. then.

$$\iint_{S} \vec{F} \cdot \vec{h} \, ds = \iiint_{V} d\vec{v} \vec{F} \, dv$$

where n'is the outword drawn Unit the normal vector to the sunface S.

Eromple For any closed Sonface S, prove that SScinifinds Soin By divergence thrown, we have $\iint_{i} \operatorname{Cunl} \vec{P} \cdot \vec{n} \, \mathrm{d}s = \iint_{i} \left(\operatorname{div}_{i} \operatorname{Cunl}_{i} \vec{F} \right) \mathrm{d}v = 0$ Evaluate J. S. n' ds, where S& a closed Sunface Cy and $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$ Son By Grauss clivergence theorem $\iint \vec{x} \cdot \vec{h} \, dS = \iiint d\vec{v} \cdot \vec{x} \, dV$ = JJJ 3dv = SV

Where V B the volume enclored by S.

15

-

1

Ex The vector field = x2i+zj+yzk & defined over the volume of the cuboid given by OEREA, 0 = y = b, 0 = z = c enclosing the Sunface - evaluate JF.ds Sol" By Gauss-clivergne theorem. $\iint \vec{F} \cdot d\vec{s} = \iint dv \vec{F} dv.$ $= \int \int \int \frac{\partial}{\partial z} (y^2) + \frac{\partial}{\partial z} (z) + \frac{\partial}{\partial z} (y^2) dv$ = \\ (21+4) dv = $\int \int (2x+y) dz dy dx$. $= \int_{a}^{a} \left(\frac{1}{2x+y} \right) (z)_{b}^{c} dy dk.$ $= c \int \left(2xy + \frac{y^2}{2}\right)^b dx$ $= bc \int_{0}^{q} 2x + \frac{b}{2} dx = bc \left(x^{2} + \frac{b}{2} x \right)_{0}^{q}$ = abc(atb)

I Evaluate $\iint (y^2 z^2 i^2 + z^2 x^2 j^2 + z^2 y^2 x^2) \cdot n^2 ds$, where $\Im s^3 the part of the Sphere <math>\Im^2 + y^2 + z^2 = 1$ above the $\Im y$ -plane and bounded by this plane.

Sol? Let V be the Volume Enclosed by the Sunface S. Then by divergence theorem, we have.

53

 $\int \int \left(y^{3} z^{3} i + z^{3} y^{3} j + z^{3} y^{3} k\right) ds = \int \int \int dv \left(y^{3} z^{3} i + z^{3} z^{3} j + z^{3} y^{3} k\right) dv$ = $\int \int \left(\frac{\partial}{\partial x} (y^{3} z^{2}) + \frac{\partial}{\partial z} (z^{2} z^{3}) + \frac{\partial}{\partial z} (z^{3} z^{3})\right) dv$ = $\int \int \int \frac{\partial}{\partial x} (y^{3} z^{2}) dv = 2 \int \int \int z y^{3} dv$

a ⇒ risinocop, y = or sino sino, z=ocoodv = risino du do de

To Core V, the Limit of or will be otol $\Theta \rightarrow 0$ to II, $= 2 \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{\pi/2} (\mu \cos \Theta) (\partial t \sin \theta \sin^{2} \Theta) \partial t \sin \Theta} du d\Theta d\rho$ $= 2 \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1} dx \sin^{2} \Theta \cos \sin^{2} \Theta \cos \sin^{2} \Theta du d\Theta d\rho$ $= 2 \int_{0}^{2\pi} \int_{0}^{\pi/2} \sin^{2} \Theta \cos \sin^{2} \Theta \left[\frac{\partial t^{6}}{t} \right]_{0}^{1} d\Theta d\rho$ $= 2 \int_{0}^{2\pi} \sin^{2} \Theta \frac{1}{2} d\varphi = \frac{1}{12} \int_{0}^{2\pi} \sin^{2} \theta d\varphi$

10

Ti

Now, JJJ div P dv = (a+b+c) JJJ dv (4) Volume of ellipsoid and <u>x2</u> + y2 + z2 = 1 B y Tabe. Volume of eleipsoid (ant + bit ct=1) & ynt to to = 411 BJabe Egn (F) SScliv F dv=(a+b+c) 47 3 Jabe = <u>471 (a+b+c</u>) 3 Jobc Example Evaluate $\int (a^2x^2 + b^2y^2 + c^2z)^2 d\bar{s}$ where \bar{s} the Sunface of the ellipsoid an2+by2+c2=1 $U + \vec{F} \cdot \vec{n} = (a^2 n^2 + b^2 y^2 + c^2 z^2)^{1/2} \cdot -(1)$ Sum $Ut \quad \not = an^2 + by^2 + c^2 - l$ grad g = 2azi + 2by f + 2czk $9rad \Phi$ = $2\sqrt{a^2x^2+b^2y^2+c^2z^2}$ $n^{2} = \frac{grad q}{grad q} = \frac{ari^{2} + by f + crn^{2}}{\sqrt{a^{2}y^{2} + b^{2}y^{2} + c^{2}z^{2}}}.$ From (Dom 2) it is clean that $\vec{F} = \chi \hat{i} + g \hat{j} + \chi \hat{k}$ div $\vec{P} = \frac{\partial}{\partial t}(x) + \frac{\partial}{\partial t}(x) + \frac{\partial}{\partial z}(z)$ = 1+1+1=3 By SJA. di = SSJ div R dv = 355 Jdv = 3V = 471 1

Over the face OABC

$$z = 0$$
, $dz = 0$, $\hat{h} = -\hat{k}$ $ds = dxdy$
 $\int \vec{F} \cdot \hat{n} ds = \int_{0}^{1} \int_{0}^{1} (-y^{2}j) (-\hat{k}) dx dy = 0$ (3)

Over the face BCDE

$$y=1$$
 dy=0, $\hat{n}=\hat{j}$ ds=drdz
 $\int P \cdot \hat{n} ds = \int \int (4\pi z \hat{i} - \hat{j} + z\hat{k}) \cdot \hat{j} dr dz$
 $= -\int_0^z \int dr dz = -(\pi) \hat{o}(\pi) \hat{o} = -1$

Over the face DEFG

$$z = 1, dz = 0, \hat{n} = \hat{k}, ds = dxdy$$

$$\iint \vec{F} \cdot \hat{h} ds = \iint (4xi - y^2 j + y\hat{k}) \hat{k} e^{jx} dy$$

$$\iint \vec{J} \cdot y e^{jx} dy = \iint dx \int_{0}^{1} y dy = (2)_{0}^{1} (\frac{y^2}{z})_{0}^{1} = \frac{1}{2} - (5)$$

Over the face AOGF

$$y=0$$
, $dy=0$, $\hat{n}=-j$ $ds=dxdz$
 $\int\int \vec{F}\cdot \hat{n} ds = \int \int (4xz\hat{i})\cdot(-\hat{j})dxdz = 0$ (6)

$$\frac{OVer \text{ He fau OCDG}}{x=0, dx=0, \hat{m}=-\hat{i} ds = dydz.}$$

$$\int \vec{F} \cdot \hat{n} ds = \int \int (-y^2 \hat{j} + yz \hat{k}) (-\hat{i}) dy dz = 0 - 1$$

Over the face. ABEE 50

$$\chi = 1, \ d\chi = 0, \ \hat{\eta} = \hat{l}, \ ds = dy dz$$

$$\int \vec{F} \cdot \hat{\eta} \ ds = \int_{0}^{1} \int (4z\hat{l} - y\hat{l} + yz\hat{h}) \cdot \hat{l} \ dy dz$$

$$= \int_{0}^{1} \int 4z \ dy dz = \int dy \int 4z \ dz = (4) \int_{0}^{1} (2z) = 2 - (3)$$
Adding (3), (4), (5), (6), (7), (8), we get over the variable sinface $\int \vec{F} \cdot \hat{\eta} \ ds = 0 - 1 + \frac{1}{2} + 0 + 0 + 2 = \frac{3}{2} - (9)$

From $e_q^n @ and (q) \qquad f \neq h ds = \int \int div \neq dv$

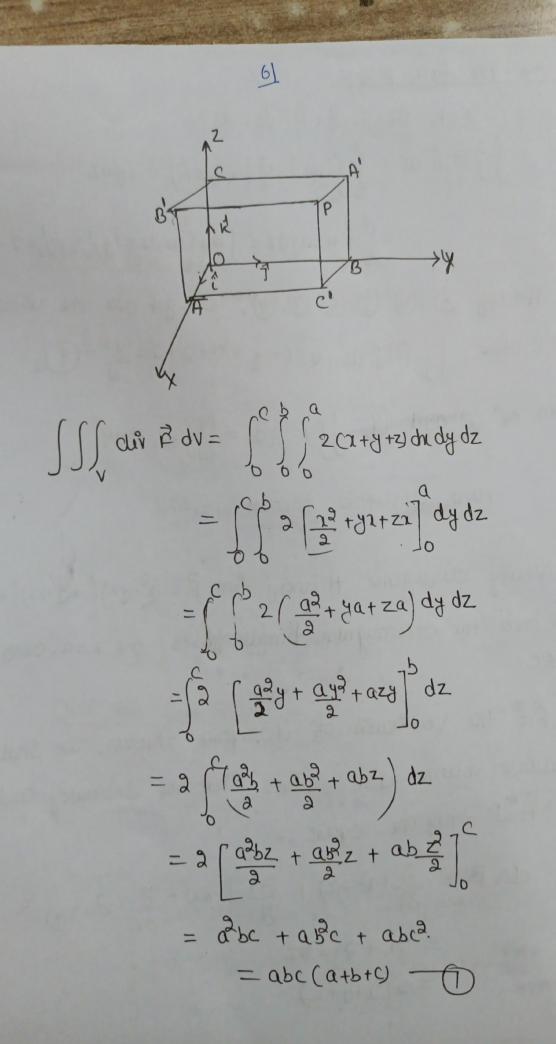
Hence clivergence theorem verified.

En Veuify clivergence theorem for $\vec{F} = (\vec{k} - yz)(\vec{i} + (\vec{k} - zx))\vec{j} + (\vec{k} - xy)\vec{k}$ taken over the succomputer bonalleloppibed $0 \le x \le a, 0 \le y \le b,$ $0 \le z \le c.$

Sd^A For the Verification of devergence thrown, we shall evaluate volume and Simface integral seperately and Shao that they are equal.

Now
$$\operatorname{ch} \overrightarrow{F} = \frac{\partial}{\partial 1} (1^2 \cdot y^2) + \frac{\partial}{\partial y} (y^2 - zx) + \frac{\partial}{\partial z} (z^2 - xy)$$

= $2x + 3y + 5z$
= $2(x + y + z)$



62 To evaluate the Sunface integral, divide the closed Sunface Sof Ocectangular paralelopiped onto 6 ponts. the

$$S_{1} = \text{the face OACB}$$

$$S_{2} = \text{the face CB'PA'}$$

$$S_{3} = \text{the face OBA'C}$$

$$S_{4} = \text{the face AC'PB'}$$

$$S_{5} = \text{the face OCB'A}$$

$$S_{6} = \text{the face BA'PC'}$$

0

$$\begin{array}{l} \text{Also} \quad \iint_{S_{1}} \vec{F} \cdot \hat{n} \, ds = \iint_{S_{1}} \vec{F} \cdot \hat{n} \, ds + \iint_{S_{2}} \vec{F} \cdot \hat{n} \, ds + \iint_{S_{4}} \vec{F} \cdot \hat{n} \, ds$$

$$\underbrace{Oh S_{1}(z=0), \quad Ochave h = 4}_{\vec{F}} = \hat{x}(t+y^{2}f) - xyh$$

$$\vec{F} = \hat{x}(t+y^{2}f) - xyh(-t^{2}) = xy$$

$$\int\int_{S} \vec{F} \cdot \hat{h} \, ds = \int_{O}^{A} \hat{f} \cdot xy \, dt \, dy = \int_{O}^{A} (\frac{x}{2}t^{2} + y^{2}f) - xyh(-t^{2}) = xy$$

$$\int\int_{S} \vec{F} \cdot \hat{h} \, ds = \int_{O}^{A} \hat{f} \cdot xy \, dt \, dy = \int_{O}^{A} (\frac{x}{2}t^{2} + y^{2}f) - xyh(-t^{2}) = xy$$

$$\int\int_{S} \vec{F} \cdot \hat{h} \, ds = \int_{O}^{A} \hat{f} \cdot xy \, dt \, dy = \int_{O}^{A} (\frac{x}{2}t^{2} + y^{2}f) - xyh(-t^{2}) = xy$$

$$f = (x^{2} - xy)t + (y^{2} - x)f + (z^{2} - xy)h(-t^{2}) = x^{2} + y^{2} + y^$$

Downloaded from : uptukhabar.net

6

on
$$S_{g}(1=0)$$
 we have $\dot{h}=-\dot{i}$
 $\vec{F}=-yz\dot{i}+g\dot{j}+2\dot{k}$
 $\vec{F}\cdot\dot{n}=(-yz\dot{i}+g\dot{j}+z\dot{k})(-\dot{i})=yz$
 $\int\int\vec{F}\cdot\dot{n}\,ds=\int\int^{b}_{b}yzdydz=\int^{b}_{b}g^{2}zdz=\frac{b^{2}c^{2}}{4}$

On
$$S_{q}(1=a)$$
, we have
 $h^{2}=h^{2}$, $\vec{F} = (a^{2}-yz)^{2} + (y^{2}-az)^{2} + (e^{2}-ay)^{2}$
So that $\vec{F}\cdot\vec{h} = [(a^{2}-yz)^{2} + (y^{2}-az)^{2} + (e^{2}-ay)^{2}]^{2}$
 $= a^{2}-yz$
 $\int \int_{S_{q}} \vec{F}\cdot\vec{h} \, dS = \int_{0}^{C} \int_{0}^{C} (a^{2}-yz)^{2} \, dy \, dz = \int_{0}^{C} (a^{2}b - \frac{y^{2}}{2})^{2} \, dz$
 $= a^{2}bz - \frac{b^{2}c^{2}}{2}$
On $S_{5}(y=a)$ we have $h^{2} - \frac{1}{2}$, $\vec{F} = n^{2}t^{2} - zxf + \frac{2}{2}k^{2}$
So that $\vec{F}\cdot\vec{h} = (n^{2}t^{2} - zxf + \frac{2}{2}k^{2})(-\frac{1}{2}) = zx$.
 $\int \int_{S_{5}} \vec{F}\cdot\vec{h} \, dS = \int_{0}^{a} \int_{0}^{C} zxdz \, dz = \int_{-\frac{1}{2}}^{a} \frac{c^{2}}{2}z \, dz = \frac{a^{2}c^{2}}{4}$
On $S_{6}(y=b)$, we have $\dot{h} = f$, $\vec{F} = (e^{2}-bz)^{2} + (e^{2}-zx)f + (e^{2}bx)k^{2}$
So that $\vec{F}\cdot\vec{h} = [(a^{2}-bz)t^{2} + (e^{2}-zx)f + (e^$

$$\iint \vec{P} \cdot \vec{h} \, ds = \iint (\vec{b}^2 - zx) \, dz \, dx = \iint (\vec{b}^2 c - c^2 x) \, dx = abc - a^2 c^2 + c^2 c^2 + a^2 + a^2 + a^2 c^2 + a^2 + a^2 + a^2 + a^2 + a^2 + a^2 + a^2$$

STOCK' Theorem

F(-a1)

If s is an open surface bounded by a closed curve c Cha F=Fii+Faf+Faf+Fak 13 any vector point function having Continuous first Order Pontial derivative then

64

de doit = scurt. n ds

 $\underline{E}_{\underline{X}}$ Veuity Stoki' theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken sound. the ouchangle bounded by the lines $x = \pm a$, y = 0, y = b(J=b Ba, b)

$$\begin{array}{c} 1 = 0 \\ 1 = 0 \\ (-0,0)$$

ABO

The Curve C Consists of four Linu AB, BE, ED and DA Along AB, 2=0, d2=0; y->oto b $\int \left[\left(\partial_{x}^{2} + \partial_{y}^{2} \right) d\mathbf{r} - \partial_{x} \partial_{y} dy \right] = \int -\partial_{x} \partial_{y} dy = -\alpha \left[\partial_{y}^{2} \partial_{y}^{2} = -\alpha \partial_{y}^{2} \partial_{y}^{2} \right]$ AB

Along BE,
$$y=b$$
, $dy=0$, $2 \rightarrow 0+b-a$.

$$\int \left[(n^{2}+y^{2})dx - 2ny dy \right] = \int_{a}^{a} (n^{2}+b^{2})dx = \left[\frac{n^{2}}{3} + b^{2} \right]_{a}^{a} = \frac{n^{2}}{3} - \frac{$$

The equality (5) and (3) Verifies Store's theorem.

Ex Evaluate of F. doi by Stoke' theorem, where engineering and F=y²i+n²j-(x+z)k and C & the boundary of triangle with rentias at (0,0,0), (1,0,0) and (1,1,0) Sol? Situ Z-Coorclinates of each vertex of the triangle 13 zero, thrufox triangle lips in zy-plane and n=k 32 -BO $CunLP = \begin{bmatrix} i & j & k \\ \partial \lambda & \partial j & \partial z \\ \partial \lambda & 0 & j & \partial z \\ 0 & 2 & -(\lambda + 2) \end{bmatrix}$ = $\hat{J} + 2(\alpha + \beta) \hat{k}$ $CUNLP. \hat{n} = [f + 2(n-y)\hat{k}].\hat{k} = 2(n-y)$ The equation of line DB & y=rc. c F. doit = SS CURL R. Ads = $\int \int 2(x-y) dy dx$. $= \int 2 \left[xy - \frac{y^2}{2} \right]^2 dt = 2 \int \left(x^2 - \frac{x^2}{2} \right) dt$ $=\int x^2 dx = \frac{1}{3}$

67 * Apply stoke theorem to evaluate ((1+y) di + &1-z) dy + (1+z). where c is the boundary of the triangle with vertices (2,0,0, (0,3,0) and (0,0,6) c 16,016) 6,3,0) A (2,0,0) let S be the plane surface of triangle ABC bounded by c. let n' be the Drut normal vector to the Sunface S. Then by Store's theorem, we have. c F. doi = SSCUNLE? À ds O Here $\vec{F} = (x+y)\hat{i} + (2x-z)\hat{j} + (y+y)\hat{k}$ $Cunt \vec{P} = \begin{vmatrix} \vec{1} & \vec{J} & n^{T} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial q} & \frac{\partial}{\partial z} \end{vmatrix}$ 7+4 22-2 8+2 $-\hat{i}(1+1)-\hat{j}(0-0)+\hat{n}(2-1)$ -21+K

Eqn of the blane of and Aex =
$$\frac{1}{3} + \frac{1}{3} + \frac{2}{6} = 1$$

Let $\mathcal{P} = \frac{1}{3} + \frac{1}{3} + \frac{2}{6} = 1$
Nou null to the blane $\triangle ABC B$
 $\nabla \mathcal{P} = \left((\frac{1}{3} + \frac{1}{3}) + \frac{1}{3} + \frac{1}{3$

.0