

Roll No: Subject Code: KAS101

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 PHYSICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief. $2 \times 10 = 20$

	recempt an questions in brief.	- 11 10	
Qno.	Question	Marks	CO
a.	What is inertial and non-inertial frame of references?	2	1
b.	Show that the massless particle can exist only if they move with the speed of	2	1
	light and their energy E and momentum p must have the relation E= pc.		
c.	Write Maxwell's equations in non-conducting medium.	2	2
d.	Define skin depth.	2	2
e.	Distinguish electromagnetic waves and matter waves?	2	3
f.	What is de-Broglie hypothesis?	2	3
g.	What are coherent sources?	2	4
h.	State Rayleigh's criterion of resolution.	2	4
i.	Explain the propagation mechanism of optical fiber.	2	5
j.	What are the main components of laser?	2	5

SECTION B

2. Attempt any *three* of the following:

Qno.	Question	Marks	CO
a.	What is length contraction? Derive the necessary expression for it. Show that $x^2+y^2+z^2-c^2t^2$ is invariant. under Lorentz transformation.	10	1
b.	Show that the radiation pressure exerted by an electromagnetic wave is equal to the energy density. For a medium, conductivity $\sigma = 58 \times 10^6$ seimen/m, $\in_r = 1$. Find out the conduction and displacement current densities if the magnitude of electric field intensity is given by $E = 150 \sin(10^{10} t)$ Volt/m.		2
c.	Define wave function with its physical significance. Derive Schrodinger's time independent wave equation.	10	3
d.	Prove that reflection and transmission are complimentary in thin film interference.	10	4
e.	Develop the expressions for acceptance angle and numerical aperture of an optical fiber. A step index fiber has core refractive index 1.466, cladding refractive index 1.46. If the operating wavelength of the rays is 0.85 μ m, calculate the cut – off parameter and the number of modes, which the fibre will support. The diameter of the core = 50 μ m.	10	5

SECTION C

3. Attempt any *one* part of the following:

	The first production of the fi		
Qno.	Question	Marks	СО
a.	By using Lorentz transformation equations, derive time dilation. Show that time dilation is a real effect.	10	1
b.	Derive Einstein's mass-energy relation Calculate the amount of work to be done to increase the speed of an electron from 0.6C to 0.8C. Given that the rest mass energy of electron= 0.5 MeV.	10	1

				Sub	ject	Co	de: I	KAS	101
Roll No:									

Printed Page: 2 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 PHYSICS

4. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Derive the Poynting or work-energy theorem for the flow of energy in an	10	2
b.	electromagnetic field. Also give the physical interpretation. With the help of Maxwell's equations for free space, derive electromagnetic	10	2
	wave equation in free space and prove that electromagnetic waves are transverse in nature.		

5. Attempt any *one* part of the following:

Qno.		Question	Marks	CO
a.	potential box. Compute the ene	ation for a particle in one dimensional infinite rgy difference between the ground state & the n in a one-dimensional rigid box of length 100	10	3
b.	Define Compton effect and apple $(\Delta \lambda)$.	y it to find an expression for the Compton shift	10	3

6. Attempt any *one* part of the following:

	The first first state of the grant of the gr		
Qno.	Question	Marks	CO
a.	Explain and describe the formation of Newton's rings in reflected light. Solve	10	4
	it for reflected light to prove that the diameters of dark rings are proportional to		X
	the square roots of natural numbers. Light of wavelength 6000 A ⁰ falls	1, 1	•
	normally on a thin wedge-shaped film of refractive index 1.4 forming fringes	(C)	
	that are 2.0 mm apart. Find the angle of wedge in seconds.	Y) T	
b.	Discuss single slit Fraunhofer's diffraction and make use to show that the	*10	4
	relative intensities of successive maximum are nearly 1: 1/22 : 1/62 : 1/121:		

7. Attempt any *one* part of the following:

-	r		
Qno.	Question	Marks	CO
a.	With the help of diagram, classify and describe various types of optical fibers	10	5
	based on modes and core refractive index.		
b.	With the help of diagram describe the process of spontaneous and stimulated	10	5
	emission of radiation. Also obtain an expression for Einstein's coefficients of		
	spontaneous and stimulated emission of radiation. Analyze the value of		
	population of two states in He-Ne laser that produces light of wavelength 6000		
	Å at 27°C.		