				S	Subject Code: KAS1017							
Roll No:												

B. TECH. (SEM 1) THEORY EXAMINATION 2020-21 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Qno.	Question	Marks	CO
a.	State Einstein's postulates of Special Theory of Relativity.	2	1
b.	Find the momentum of a photon having energy 1.00×10^{-17} J.	2	1
c.	What is Displacement Current?	2	2
d.	Show that magnetic monopoles do not exist.	2	2
e.	State Wien's displacement law and Rayleigh-Jeans law.	2	3
f.	Why are matter waves associated with a particle generated only when it	2	3
	is in motion?		
g.	Two independent sources of light cannot produce interference, why?	2	4
h.	State Rayleigh criterion of Resolution. Also define resolving power.	2	4
i.	Differentiate between spontaneous and stimulated emission.	2	5
j.	With the help of a well-labelled diagram, name the components of an	2	5
	optical fibre.	0	X"

SECTION R

2. Attempt any three of the following:

Qno.	Question	Marks	CO
a.	Show that space-time interval between two events remains invariant	10	1
	under Lorentz transformations.		
b.	Find the conduction current density and displacement current density for	10	2
	a solid with conductivity, $\sigma = 10^{-3}$ S/mand $\varepsilon_r = 2.5$. Electric field		
	intensity, $E = 4.5 \times 10^{-6} \sin(10^{9} t)$.		
c.	Find the two lowest permissible energy states for an electron which is	10	3
	confined in a one dimensional infinite potential box of width 3.5×10 ⁻⁹ m.		
d.	Calculate the thickness of a soap bubble thin film that will result in	10	4
	constructive interference in reflected light. The film is illuminated with		
	light of wavelength 5000 Å and the refractive index of the film is 1.45.		
e.	What do you understand by attenuation and dispersion in an optical	10	5
	fibre. A communication system uses a 25 km long fibre having a loss of		
	2.5 dB/km. The input power is 2500 μW, compute the output power.		

SECTION C

3. Attempt any *one* part of the following:

		1
	10	1
±. • • • • • • • • • • • • • • • • • • •		
1	What do you mean by time dilation? Explain with the help of a mathematical proof. Justify with an experimental evidence to show that ime dilation is a real effect.	± * * * * * * * * * * * * * * * * * * *

						Pri	ntec	l Pa	ge: 2	2 of 2	
				S	ubj	ect (Code	: K	AS1	01T	
Roll No:											

Derive Einstein's mass-energy relation and show that relativistic kinetic	10	1
energy of a particle is given by:		
$k = (m - m_0)c^2 = m_0c^2 \left[\left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} - 1 \right]$		

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Write Maxwell's equations in free space. Also show that the electric and	10	2
	magnetic vectors are normal to the direction of propagation of the		
	electromagnetic wave.		
b.	State and deduce Poynting theorem for the flow of energy in an	10	2
	electromagnetic field. Discuss the physical significance of Poynting		
	theorem.		

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	What is wave function? Derive time independent Schrodinger wave	10	3
	equation.		
b.	What is Compton effect? Derive an expression for Compton shift.	10	3

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Describe the formation of Newton's rings in monochromatic light. Show	10	4
	that in reflected light, the diameters of dark rings are proportional to the		
	square roots of natural numbers.		
b.	What is a diffraction grating? Discuss the phenomenon of diffraction due	10	4
	to plane diffraction grating.		

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Illustrate the construction and working of He-Ne laser? Discuss important applications of laser.	10	5
	important applications of laser.		
b.	Derive expressions for acceptance angle and numerical aperture.	10	5