Roll No:

\square

BTECH

(SEM I) THEORY EXAMINATION 2021-22
MATHEMATICS-I
Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SEC	ON-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	Find the eigen value of A^{3} where $\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.			1
Q1(b)	Show that the system of vectors $X_{1}=(1,-1,1), X_{2}=(2,1,1)$, and $X_{3}=(3,0,2)$ are linearly dependent or linearly independent.			1
Q1(c)	If $y=A \sin n x+B \cos n x$, prove that $y_{2}+n^{2} y=0$.			2
Q1(d)	Find the asymptotes parallel to y-axis of the curve $\frac{a^{2}}{x}+\frac{b^{2}}{y}=1$.			2
Q1(e)	If $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$.			3
Q1(f)	An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.			3
Q1(g)	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{y}{x}} d y d x$			${ }^{4}$
Q1(h)	Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$. Find p such that $\vec{A}=\left(p x+4 y^{2} z\right) i+\left(x^{3} \sin z-3 y\right) j-\left(e^{x}+4 \cos x^{2} y\right) k$ is solenoidal.			
Q1(i)				5
Q1(j)	State Green's theorem for a plane region.			5

SECT	ON-B	Attempt ANY THREE of the following	Marks $\mathbf{3} \mathbf{X 1 0}=$	CO
Q2(a)	Find the eigen values and corresponding eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.			
Q2	Verify Rolle's theorem for the function $f(x)=\sqrt{4-x^{2}}{ }^{\circ}$ in $[-2,2]$.			
Q2(c)	Find the first six terms of the expansions of the function $e^{x} \log (1+y)$ in a Taylor series in the neighborhood of the point $(0,0)$.			3
Q2(d)	Change the order of integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.			
Q2(e)	If a vector field is given by $\vec{F}=\left(x^{2}-y^{2}+x\right) i-(2 x y+y) j$ Is this field irrotational? If so, find its scalar potential.			5

| SECTION-C Attempt ANY ONE following Question Marks (1X10=10) | CO | |
| :--- | :--- | :---: | :---: |
| Q3(a) | Find for what values of λ and μ the system of linear inequation: $x+y+z=6$,
 $x+2 y+5 z=10,2 x+3 y+\lambda z=\mu$ has(i) a unique solution, (ii) no solution,
 (iii) infinite solution. Also find the solution for $\lambda=2$ and $\mu=8$. | |
| Q3(b) | Find the rank of matrix reducing it to normal form | |
| $\qquad A=\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6\end{array}\right]$ | | |
| | | |

Roll No: \square

BTECH

(SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)		CO
Q4(a)	If $y=\left(\sin ^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$ and calculate $y_{n}(0)$.	2
Q4(b)	Verify mean value theorem for the function $f(x)=x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$.	2

SECTIO	-C	Attempt ANY ONE following Que	1 $\mathrm{X} 10=$	CO
Q5(a)	A rectangular box which is open at the top having capacity 32c.c.Find the dimension of the box such that the least material is required for its constructions.			3
Q5(b)If $\frac{\partial}{\partial}$ ($\begin{aligned} & \text { If u, va } \\ & \frac{\partial(u, v, w)}{\partial(x, y, z)} . \end{aligned}$	are the roots of $(\lambda-x)^{3}+(\lambda-y)$	bic in λ, find	3

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO

Q6(a) Find by double integration the area enclosed by the pair of curves $y=2-x$ and $y^{2}=2(2-x)$.
Q6(b) Find C.G. of the area in the positive quadrant of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)		
Q7(a)	Find the directional derivative of $f(x, y, z)=x y z$ at the point $P(1,-1,2)$ in the direction of the vector $(2 i-2 j+2 k)$.	5
Q7(b)	Verify Stoke's Theorem for $\vec{F}=(y-z+2) i+(y z+4) j-(x z) k$ over the surface of cube $x=0, y=0, z=0, x=2, y=2, z=2$ above the XOY plane.	5

