Printed Pages: 03 Paper Id: 19910.

Attempt all questions.

	Su	b C	ode	e: K	AS	103		
Roll No.								

B.Tech. (SEM-I) THEORY EXAMINATION 2018-19 MATHEMATICS-I

Time: 3 Hours

1.

Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Q no. Ouestion Marks CO Find the rank of the matrix $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ 2 ł a. 3 b. Find the stationary point of $f(x, y) = x^3 + y^3 + 3axy, a > 0$ 2 2 3 If $x = r\cos\theta$, $y = r\sin\theta$, z = z then find $\frac{\partial(r, \theta, z)}{\partial t}$ c. $\partial(x,$ Define del ∇ operator and gradient. 2 d. 17:55:242 If $\phi = 3x^2 y - y^3 z^2$, find grad **(4)** to point (2, 0, -2). e. Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{y}{x}} dx dy$ f. If the eigen values of matrix A are 1, 1, 1, then find the eigen values of 2 1 g. 1.20 $A^{2} + 2A + 3I$. Define Rolle's Theorem 2 h. 2 2 3 If $u = x^3 y^2 \sin^{-1}(y/x)$, then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ i. In RI = E and possible error in E and I are 20% and 10 % respectively, then find the error in R 2 j. 3 then find the error in R. State the Taylor's Theorem for two variables 2 3 k. ION B 2. Attempt any three of the following: Marks CO Q no. Question Using Cayley- Hamilton theorem find the inverse of the matrix A= 10 1 a. 2 3 2 4 5 . 3 5 6 Also express the polynomial $B = A^8 - 11A^7 - 4A^6 + A^5 + A^4 - 11A^3 - 3A^2 + 2A + I$

as a quadratic polynomial in A and hence find B.

Downloaded from : uptukhabar.net

	7		
b.	If $y = Sin(m sin^{-1}x)$, prove that : $(1 - x^2) y_{n+2} - (2n + 1)x y_{n+1} - (n^2 - m^2)y_n = 0$ and find y_n at $x = 0$.	10	2
C .	If u, v, w are the roots of the equation $(x - a)^3 + (x - b)^3 + (x - c)^3 = 0$,	10 ·	3
	then find $\frac{\partial(\mathbf{u},\mathbf{v},\mathbf{w})}{\partial(\mathbf{a},\mathbf{b},\mathbf{c})}$.	10	
d.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy$ by changing to polar coordinates.	10	4
	Hence show that $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$		
e.	Verify the divergence theorem for $\vec{F} = (x^3 - yz)\hat{i} + (y^3 - zx)j + (z^3 - xy)\hat{k}$, taken over the cube bounded by planes $x = 0$, $y = 0$, $z = 0$, $x = 1$, $y = 1$, $z = 1$.	10	5
	SECTION C		
3.	Attempt any one part of the following:		
Q no.	Question	Marks	CO
a.	Find inverse employing elementary transformation A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$	10	1 ,
b.		10	1
	Reduce the matrix A to its normal form when $A = \begin{bmatrix} 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.		
	Reduce the matrix A to its normal form when A = $\begin{bmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$		
	Hence find the rank of A.		

4.	Attempt any one part o	f the	following:
----	------------------------	-------	------------

Q no.	Question Mar	s CO
a.	If $\sin^{-1} y = 2\log(x+1)$ show that 10	2
	$(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$	
h		

b. Verify Lagrange's Mean value Theorem for the function $f(x) = x^3$ in 10 2 [-2.2]

•

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Find the maximum or minimum distance of the point $(1, 2, -1)$ from the	10	3
b.	sphere $x^2 + y^2 + z^2 = 24$. If $u = \cos^{-1}(\frac{x+y}{\sqrt{x}+\sqrt{y}})$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$	10	3

Downloaded from : uptukhabar.net

.

6. Attempt any one part of the following:

Q no. Question Marks CO a. Change the order of integration and then evaluate: $\int_{0}^{2} \int_{xy}^{3-x} dy dx$. $0 \quad \frac{x^2}{4}$

b. Calculate the volume of the solid bounded by the surface x=0, y=0, 10 4 x+y+z=1 & z=0.

7. Attempt any one part of the following:

Q no. Question Marks CO a. Prove that $(y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both 10 5 Solenoidal and Irrotational.

b. Find the directional derivative of $\Phi = 5x^2y - 5y^2z + \frac{5}{2}z^2x$ at the point 10

P(1, 1, 1) in the direction of the line

$$\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$$

Downloaded from : uptukhabar.net