Process Concept

· An operating system executes a variety of programs:
· Batch system – jobs
· Time-shared systems – user programs or tasks
· Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must progress in sequential fashion
[image: ]A process includes:
· program counter 
· stack
· data section
Process in Memory








Process State


As a process executes, it changes stat
e
· new:  The process is being created
· running:  Instructions are being executed
· waiting:  The process is waiting for some event to occur
· ready:  The process is waiting to be assigned to a processor
· terminated:  The process has finished execution
Diagram of Process State
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[image: ]Process Control Block (PCB)

Information associated with each process
· Process state
· Program counter
· CPU registers
· CPU scheduling information
· Memory-management information
· Accounting information
· I/O status information




CPU Switch From Process to Process
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Process Scheduling Queues

· Job queue – set of all processes in the system
· Ready queue – set of all processes residing in main memory, ready and waiting to execute
· Device queues – set of processes waiting for an I/O device
· Processes migrate among the various queues


Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling
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Schedulers
· Long-term scheduler  (or job scheduler) – selects which processes should be brought into the ready queue
· Short-term scheduler  (or CPU scheduler) – selects which process should be executed next and allocates CPU

Addition of Medium Term Scheduling
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· Short-term scheduler is invoked very frequently (milliseconds)  (must be fast)
· Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be slow)
· The long-term scheduler controls the degree of multiprogramming
· Processes can be described as either:
· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts
· CPU-bound process – spends more time doing computations; few very long CPU bursts
Context Switch
· When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a context switch
· Context of a process represented in the PCB
· Context-switch time is overhead; the system does no useful work while switching
· Time dependent on hardware support
Process Creation
· Parent process create children processes, which, in turn create other processes, forming a tree of processes
· Generally, process identified and managed via a process identifier (pid)
· Resource sharing
· Parent and children share all resources
· Children share subset of parent’s resources
· Parent and child share no resources
· Execution
· Parent and children execute concurrently
· Parent waits until children terminate
· Address space
· Child duplicate of parent
· Child has a program loaded into it
· UNIX examples
· fork system call creates new process
· exec system call used after a fork to replace the process’ memory space with a new program
[image: ]Process Creation










C Program Forking Separate Process


int main()
{
pid_t  pid;
	/* fork another process */
	pid = fork();
	if (pid < 0) { /* error occurred */
		fprintf(stderr, "Fork Failed");
		exit(-1);
	}
	else if (pid == 0) { /* child process */
		execlp("/bin/ls", "ls", NULL);
	}
	else { /* parent process */
		/* parent will wait for the child to complete */
		wait (NULL);
		printf ("Child Complete");
		exit(0);
	}
}

[image: ]A tree of processes on a typical Solaris












Process Termination
· Process executes last statement and asks the operating system to delete it (exit)
· Output data from child to parent (via wait)
· Process’ resources are deallocated by operating system
· Parent may terminate execution of children processes (abort)
· Child has exceeded allocated resources
· Task assigned to child is no longer required
· If parent is exiting
Some operating system do not allow child to continue if its parent terminates
All children terminated - cascading termination
Interprocess Communication
· Processes within a system may be independent or cooperating
· Cooperating process can affect or be affected by other processes, including sharing data
· Reasons for cooperating processes:
· Information sharing
· Computation speedup
· Modularity
· Convenience	
· Cooperating processes need interprocess communication (IPC)
· Two models of IPC
· Shared memory
· Message passing

Communications Models 
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Cooperating Processes

· Independent process cannot affect or be affected by the execution of another process
· Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation
· Information sharing 
· Computation speed-up
· Modularity
· Convenience
Producer-Consumer Problem


· Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
· unbounded-buffer places no practical limit on the size of the buffer
· bounded-buffer assumes that there is a fixed buffer size
Bounded-Buffer – Shared-Memory Solution


Shared data
#define BUFFER_SIZE 10
typedef struct {
	. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
Solution is correct, but can only use BUFFER_SIZE-1 elements



Bounded-Buffer – Producer

	while (true) {
   /* Produce an item */
        while (((in = (in + 1) % BUFFER SIZE count)  == out)
	     ;   /* do nothing -- no free buffers */
	    buffer[in] = item;
	    in = (in + 1) % BUFFER SIZE;
     }


	
Bounded Buffer – Consumer
while (true) {
          while (in == out)
                 ; // do nothing -- nothing to consume

	     // remove an item from the buffer
	     item = buffer[out];
	     out = (out + 1) % BUFFER SIZE;
	return item;
     }
Interprocess Communication – Message Passing


· Mechanism for processes to communicate and to synchronize their actions
· Message system – processes communicate with each other without resorting to shared variables
· IPC facility provides two operations:
· send(message) – message size fixed or variable 
· receive(message)
· If P and Q wish to communicate, they need to:
· establish a communication link between them
· exchange messages via send/receive
· Implementation of communication link
· physical (e.g., shared memory, hardware bus)
· logical (e.g., logical properties)
Direct Communication
· Processes must name each other explicitly:
· send (P, message) – send a message to process P
· receive(Q, message) – receive a message from process Q
· Properties of communication link
· Links are established automatically
· A link is associated with exactly one pair of communicating processes
· Between each pair there exists exactly one link
· The link may be unidirectional, but is usually bi-directional

Indirect Communication


· Messages are directed and received from mailboxes (also referred to as ports)
· Each mailbox has a unique id
· Processes can communicate only if they share a mailbox
· Properties of communication link
· Link established only if processes share a common mailbox
· A link may be associated with many processes
· Each pair of processes may share several communication links
· Link may be unidirectional or bi-directional
· Operations
· create a new mailbox
· send and receive messages through mailbox
· destroy a mailbox
· Primitives are defined as:
· send(A, message) – send a message to mailbox A
· receive(A, message) – receive a message from mailbox A
· Mailbox sharing
· P1, P2, and P3 share mailbox A
· P1, sends; P2 and P3 receive
· Who gets the message?
· Solutions
· Allow a link to be associated with at most two processes
· Allow only one process at a time to execute a receive operation
· Allow the system to select arbitrarily the receiver.  Sender is notified who the receiver was.
Synchronization




· Message passing may be either blocking or non-blocking
· Blocking is considered synchronous
· Blocking send has the sender block until the message is received
· Blocking receive has the receiver block until a message is available
· Non-blocking is considered asynchronous
· Non-blocking send has the sender send the message and continue
· Non-blocking receive has the receiver receive a valid message or null
Buffering
Queue of messages attached to the link; implemented in one of three ways
1.	Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)
2.	Bounded capacity – finite length of n messages
Sender must wait if link full
3.	Unbounded capacity – infinite length 
Sender never waits
Examples of IPC Systems - POSIX
· POSIX Shared Memory
· Process first creates shared memory segment
· segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);
· Process wanting access to that shared memory must attach to it
· shared memory = (char *) shmat(id, NULL, 0);
· Now the process could write to the shared memory
· printf(shared memory, "Writing to shared memory");
· When done a process can detach the shared memory from its address space
· shmdt(shared memory);
Examples of IPC Systems - Mach


· Mach communication is message based
· Even system calls are messages
· Each task gets two mailboxes at creation- Kernel and Notify
· Only three system calls needed for message transfer
· msg_send(), msg_receive(), msg_rpc()
· Mailboxes needed for commuication, created via
· port_allocate()
Examples of IPC Systems – Windows XP
· Message-passing centric via local procedure call (LPC) facility
· Only works between processes on the same system
· Uses ports (like mailboxes) to establish and maintain communication channels
· Communication works as follows:
The client opens a handle to the subsystem’s connection port object
The client sends a connection request
The server creates two private communication ports and returns the handle to one of them to the client
The client and server use the corresponding port handle to send messages or callbacks and to listen for replies
[image: 3]Local Procedure Calls in Windows XP







Communications in Client-Server Systems
· Sockets
· Remote Procedure Calls
· Remote Method Invocation (Java)
Sockets
· A socket is defined as an endpoint for communication
· 
· Concatenation of IP address and port
· The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
· Communication consists between a pair of sockets
Socket Communication


[image: ]



Remote Procedure Calls
· Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
· Stubs – client-side proxy for the actual procedure on the server
· The client-side stub locates the server and marshalls the parameters
· The server-side stub receives this message, unpacks the marshalled parameters, and peforms the procedure on the server
Execution of RPC
[image: ]



	







Remote Method Invocation
· Remote Method Invocation (RMI) is a Java mechanism similar to RPCs
· RMI allows a Java program on one machine to invoke a method on a remote object
[image: ]
	




Marshalling Parameters
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Threads
· To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems
· To discuss the APIs for the Pthreads, Win32, and Java thread libraries
· To examine issues related to multithreaded programming
[image: ]Single and Multithreaded Processes






Benefits
· Responsiveness

· Resource Sharing

· Economy

· Scalability


Multicore Programming

Multicore systems putting pressure on programmers, challenges include
· Dividing activities
· Balance
· Data splitting
· Data dependency
· Testing and debugging
Multithreaded Server Architecture




[image: 4]	







Concurrent Execution on a Single-core System


[image: 4]	


Parallel Execution on a Multicore System
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User Threads
· Thread management done by user-level threads library
· nThree primary thread libraries:
· POSIX Pthreads
· l Win32 threads
· Java threads

Kernel Threads

Supported by the Kernel

Examples
· Windows XP/2000
· Solaris
· Linux
· Tru64 UNIX
· Mac OS X
Multithreading Models


· Many-to-One

· One-to-One
[image: ]
· Many-to-Many
Many-to-One
Many user-level threads mapped to single kernel thread
Examples:
· Solaris Green Threads
· GNU Portable Threads


One-to-One
Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000
Linux
Solaris 9 and later
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Many-to-Many Model
· Allows many user level threads to be mapped to many kernel threads
· Allows the  operating system to create a sufficient number of kernel threads
· Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package
[image: ]









Two-level Model

Similar to M:M, except that it allows a user thread to be bound to kernel thread
[image: ]Examples
· IRIX
· HP-UX
· Tru64 UNIX
· Solaris 8 and earlier





Thread Libraries
· Thread library provides programmer with API for creating and managing threads
· Two primary ways of implementing
· Library entirely in user space
· Kernel-level library supported by the OS
Pthreads


· May be provided either as user-level or kernel-level
· A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
· API specifies behavior of the thread library, implementation is up to development of the library
· Common in UNIX operating systems (Solaris, Linux, Mac OS X)
Java Threads



· Java threads are managed by the JVM

· Typically implemented using the threads model provided by underlying OS

· Java threads may be created by:
· lExtending Thread class
· Implementing the Runnable interface


Threading Issues

· Semantics of fork() and exec() system calls
· Thread cancellation of target thread
· Asynchronous or deferred
· Signal handling
· Thread pools
· Thread-specific data
· Scheduler activations
Thread Cancellation



· Terminating a thread before it has finished
· Two general approaches:
· Asynchronous cancellation terminates the target thread  immediately
· Deferred cancellation allows the target thread to periodically check if it should be cancelled
Signal Handling



· Signals are used in UNIX systems to notify a process that a particular event has occurred
· A signal handler is used to process signals
· 1.Signal is generated by particular event
· 2.Signal is delivered to a process
· 3.Signal is handled
· Options:
· Deliver the signal to the thread to which the signal applies
· Deliver the signal to every thread in the process
· Deliver the signal to certain threads in the process
· Assign a specific threa to receive all signals for the process

Thread Pools
· Create a number of threads in a pool where they await work
· Advantages:
· Usually slightly faster to service a request with an existing thread than create a new thread
· Allows the number of threads in the application(s) to be bound to the size of the pool
Thread Specific Data
· Allows each thread to have its own copy of data
· Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Scheduler Activations
· Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application
· Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread library
· This communication allows an application to maintain the correct number kernel threads
[image: 4]Windows XP Threads














Implements the one-to-one mapping, kernel-level
· Each thread contains
· A thread id
· Register set
· Separate user and kernel stacks
· Private data storage area
· The register set, stacks, and private storage area are known as the context of the threads
· The primary data structures of a thread include:
· ETHREAD (executive thread block)
· KTHREAD (kernel thread block)
· TEB (thread environment block)


[image: in-4]Linux Threads








· Linux refers to them as tasks rather than threads

· Thread creation is done through clone() system call

· clone() allows a child task to share the address space of the parent task (process)

CPU Scheduling
· To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
· To describe various CPU-scheduling algorithms
· To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
· Maximum CPU utilization obtained with multiprogramming
· CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait
· CPU burst distribution
[image: ]Histogram of CPU-burst Times













[image: ]Alternating Sequence of CPU And I/O Bursts











CPU Scheduler 
Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1.	Switches from running to waiting state
2.	Switches from running to ready state
3.	Switches from waiting to ready
4.	Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive


Dispatcher
· Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
· switching context
· switching to user mode
· jumping to the proper location in the user program to restart that program
· Dispatch latency – time it takes for the dispatcher to stop one process and start another running
Scheduling Criteria
· CPU utilization – keep the CPU as busy as possible
· Throughput – # of processes that complete their execution per time unit
· Turnaround time – amount of time to execute a particular process
· Waiting time – amount of time a process has been waiting in the ready queue
· Response time – amount of time it takes from when a request was submitted until the first response is produced, not output  (for time-sharing environment)
· Max CPU utilization
· Max throughput
· Min turnaround time 
· Min waiting time 
· Min response time
First-Come, First-Served (FCFS) Scheduling



Process	Burst Time	
P1	24
 P2 	3
 P3	 3 
Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

P1
P2
P3
24
27
30
0









Waiting time for P1  = 0; P2  = 24; P3 = 27
Average waiting time:  (0 + 24 + 27)/3 = 17
Suppose that the processes arrive in the order
		 P2 , P3 , P1 
The Gantt chart for the schedule is:
n
n
n
nWaiting time for P1 = 6; P2 = 0; P3 = 3
nAverage waiting time:   (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

P1
P3
P2
6
3
30
0


	






Shortest-Job-First (SJF) Scheduling


· Associate with each process the length of its next CPU burst.  Use these lengths to schedule the process with the shortest time
· SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing
 Process	Arrival Time	Burst Time
	

 P1	0.0	6
 P2 	2.0	8
 P3	4.0	7
 P4	5.0	3
SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7

the length of the next CPU request



P4
P3
P1
3
16
0
9
P2
24







Determining Length of Next CPU Burst
· Can only estimate the length
· Can be done by using the length of previous CPU bursts, using exponential averaging
[image: ]Prediction of the Length of the Next CPU Burst






Examples of Exponential Averaging

 =0
n+1 = n
Recent history does not count
 =1
 n+1 =  tn
Only the actual last CPU burst counts
If we expand the formula, we get:
n+1 =  tn+(1 - ) tn -1 + …
            +(1 -  )j  tn -j + …
            +(1 -  )n +1 0

Since both  and (1 - ) are less than or equal to 1, each successive term has less weight than its predecessor
Priority Scheduling


· A priority number (integer) is associated with each process
· The CPU is allocated to the process with the highest priority (smallest integer  highest priority)
· Preemptive
· nonpreemptive
· SJF is a priority scheduling where priority is the predicted next CPU burst time
· Problem  Starvation – low priority processes may never execute
· Solution  Aging – as time progresses increase the priority of the process
Round Robin (RR)

· Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.  After this time has elapsed, the process is preempted and added to the end of the ready queue.
· If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once.  No process waits more than (n-1)q time units.
· Performance
· q large  FIFO
· q small  q must be large with respect to context switch, otherwise overhead is too high
Example of RR with Time Quantum = 4
Process	Burst Time
P1	24
 P2	  3
 P3	3
	
The Gantt chart is: 
P1
P2
P3
P1
P1
P1
P1
P1
0
4
7
10
14
18
22
26
30


Typically, higher average turnaround than SJF, but better response



Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

· Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
· Each queue has its own scheduling algorithm
· foreground – RR
· background – FCFS
· Scheduling must be done between the queues
· Fixed priority scheduling; (i.e., serve all from foreground then from background).  Possibility of starvation.
· Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
20% to background in FCFS 
[bookmark: _GoBack]

[image: ]Multilevel Queue Scheduling













Multilevel Feedback Queue

· A process can move between the various queues; aging can be implemented this way
· Multilevel-feedback-queue scheduler defined by the following parameters:
· number of queues
· scheduling algorithms for each queue
· method used to determine when to upgrade a process
· method used to determine when to demote a process
method used to determine which queue a process will enter when that process needs service
Example of Multilevel Feedback Queue


Three queues: 
· Q0 – RR with time quantum 8 milliseconds
· Q1 – RR time quantum 16 milliseconds
· Q2 – FCFS
· Scheduling
· A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds.  If it does not finish in 8 milliseconds, job is moved to queue Q1.
· At Q1 job is again served FCFS and receives 16 additional milliseconds.  If it still does not complete, it is preempted and moved to queue Q2.
Multilevel Feedback Queues
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Thread Scheduling

· Distinction between user-level and kernel-level threads
· Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
· Known as process-contention scope (PCS) since scheduling competition is within the process

· Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all threads in system


Pthread Scheduling

· API allows specifying either PCS or SCS during thread creation
· PTHREAD SCOPE PROCESS schedules threads using PCS scheduling
· PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.





Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{
	 int i;
	pthread t tid[NUM THREADS];
	pthread attr t attr;
	/* get the default attributes */
	pthread attr init(&attr);
	/* set the scheduling algorithm to PROCESS or SYSTEM */
	pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
	/* set the scheduling policy - FIFO, RT, or OTHER */
	pthread attr setschedpolicy(&attr, SCHED OTHER);
	/* create the threads */
	for (i = 0; i < NUM THREADS; i++)
		pthread create(&tid[i],&attr,runner,NULL);
/* now join on each thread */
	for (i = 0; i < NUM THREADS; i++)
		pthread join(tid[i], NULL);
}
 /* Each thread will begin control in this function */
void *runner(void *param)
{ 
	printf("I am a thread\n");
	pthread exit(0);
}




Multiple-Processor Scheduling

· CPU scheduling more complex when multiple CPUs are available
· Homogeneous processors within a multiprocessor
· Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing
· Symmetric multiprocessing  (SMP) – each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
· Processor affinity – process has affinity for processor on which it is currently running
· soft affinity
· hard affinity

NUMA and CPU Scheduling
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Multicore Processors

· Recent trend to place multiple processor cores on same physical chip
· Faster and consume less power
· Multiple threads per core also growing
· Takes advantage of memory stall to make progress on another thread while memory retrieve happens
 
[image: 5]Multithreaded Multicore System







Operating System Examples
· Solaris scheduling
· Windows XP scheduling
· Linux scheduling
[image: ]Solaris Dispatch Table 








[image: 5]Solaris Scheduling













[image: ]Windows XP Priorities










Linux Scheduling

· Constant order O(1) scheduling time
· Two priority ranges: time-sharing and real-time
· Real-time range from 0 to 99 and nice value from 100 to 140




Priorities and Time-slice length
[image: ]








[image: ]List of Tasks Indexed According to Priorities








Algorithm Evaluation

· Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm  for that workload
· Queueing models
· [image: ]Implementation


Evaluation of CPU schedulers by Simulation
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