Process Concept

· An operating system executes a variety of programs:
· Batch system – jobs
· Time-shared systems – user programs or tasks
· Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must progress in sequential fashion
[image:]A process includes:
· program counter
· stack
· data section
Process in Memory

Process State

As a process executes, it changes stat
e
· new: The process is being created
· running: Instructions are being executed
· waiting: The process is waiting for some event to occur
· ready: The process is waiting to be assigned to a processor
· terminated: The process has finished execution
Diagram of Process State

[image:]

[image:]Process Control Block (PCB)

Information associated with each process
· Process state
· Program counter
· CPU registers
· CPU scheduling information
· Memory-management information
· Accounting information
· I/O status information

CPU Switch From Process to Process

[image:]

Process Scheduling Queues

· Job queue – set of all processes in the system
· Ready queue – set of all processes residing in main memory, ready and waiting to execute
· Device queues – set of processes waiting for an I/O device
· Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

[image:]

Representation of Process Scheduling
[image:]

Schedulers
· Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue
· Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU

Addition of Medium Term Scheduling

[image:]

· Short-term scheduler is invoked very frequently (milliseconds) (must be fast)
· Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)
· The long-term scheduler controls the degree of multiprogramming
· Processes can be described as either:
· I/O-bound process – spends more time doing I/O than computations, many short CPU bursts
· CPU-bound process – spends more time doing computations; few very long CPU bursts
Context Switch
· When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a context switch
· Context of a process represented in the PCB
· Context-switch time is overhead; the system does no useful work while switching
· Time dependent on hardware support
Process Creation
· Parent process create children processes, which, in turn create other processes, forming a tree of processes
· Generally, process identified and managed via a process identifier (pid)
· Resource sharing
· Parent and children share all resources
· Children share subset of parent’s resources
· Parent and child share no resources
· Execution
· Parent and children execute concurrently
· Parent waits until children terminate
· Address space
· Child duplicate of parent
· Child has a program loaded into it
· UNIX examples
· fork system call creates new process
· exec system call used after a fork to replace the process’ memory space with a new program
[image:]Process Creation

C Program Forking Separate Process

int main()
{
pid_t pid;
	/* fork another process */
	pid = fork();
	if (pid < 0) { /* error occurred */
		fprintf(stderr, "Fork Failed");
		exit(-1);
	}
	else if (pid == 0) { /* child process */
		execlp("/bin/ls", "ls", NULL);
	}
	else { /* parent process */
		/* parent will wait for the child to complete */
		wait (NULL);
		printf ("Child Complete");
		exit(0);
	}
}

[image:]A tree of processes on a typical Solaris

Process Termination
· Process executes last statement and asks the operating system to delete it (exit)
· Output data from child to parent (via wait)
· Process’ resources are deallocated by operating system
· Parent may terminate execution of children processes (abort)
· Child has exceeded allocated resources
· Task assigned to child is no longer required
· If parent is exiting
Some operating system do not allow child to continue if its parent terminates
All children terminated - cascading termination
Interprocess Communication
· Processes within a system may be independent or cooperating
· Cooperating process can affect or be affected by other processes, including sharing data
· Reasons for cooperating processes:
· Information sharing
· Computation speedup
· Modularity
· Convenience	
· Cooperating processes need interprocess communication (IPC)
· Two models of IPC
· Shared memory
· Message passing

Communications Models
[image:]

Cooperating Processes

· Independent process cannot affect or be affected by the execution of another process
· Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation
· Information sharing
· Computation speed-up
· Modularity
· Convenience
Producer-Consumer Problem

· Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
· unbounded-buffer places no practical limit on the size of the buffer
· bounded-buffer assumes that there is a fixed buffer size
Bounded-Buffer – Shared-Memory Solution

Shared data
#define BUFFER_SIZE 10
typedef struct {
	. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

	while (true) {
 /* Produce an item */
 while (((in = (in + 1) % BUFFER SIZE count) == out)
	 ; /* do nothing -- no free buffers */
	 buffer[in] = item;
	 in = (in + 1) % BUFFER SIZE;
 }

	
Bounded Buffer – Consumer
while (true) {
 while (in == out)
 ; // do nothing -- nothing to consume

	 // remove an item from the buffer
	 item = buffer[out];
	 out = (out + 1) % BUFFER SIZE;
	return item;
 }
Interprocess Communication – Message Passing

· Mechanism for processes to communicate and to synchronize their actions
· Message system – processes communicate with each other without resorting to shared variables
· IPC facility provides two operations:
· send(message) – message size fixed or variable
· receive(message)
· If P and Q wish to communicate, they need to:
· establish a communication link between them
· exchange messages via send/receive
· Implementation of communication link
· physical (e.g., shared memory, hardware bus)
· logical (e.g., logical properties)
Direct Communication
· Processes must name each other explicitly:
· send (P, message) – send a message to process P
· receive(Q, message) – receive a message from process Q
· Properties of communication link
· Links are established automatically
· A link is associated with exactly one pair of communicating processes
· Between each pair there exists exactly one link
· The link may be unidirectional, but is usually bi-directional

Indirect Communication

· Messages are directed and received from mailboxes (also referred to as ports)
· Each mailbox has a unique id
· Processes can communicate only if they share a mailbox
· Properties of communication link
· Link established only if processes share a common mailbox
· A link may be associated with many processes
· Each pair of processes may share several communication links
· Link may be unidirectional or bi-directional
· Operations
· create a new mailbox
· send and receive messages through mailbox
· destroy a mailbox
· Primitives are defined as:
· send(A, message) – send a message to mailbox A
· receive(A, message) – receive a message from mailbox A
· Mailbox sharing
· P1, P2, and P3 share mailbox A
· P1, sends; P2 and P3 receive
· Who gets the message?
· Solutions
· Allow a link to be associated with at most two processes
· Allow only one process at a time to execute a receive operation
· Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.
Synchronization

· Message passing may be either blocking or non-blocking
· Blocking is considered synchronous
· Blocking send has the sender block until the message is received
· Blocking receive has the receiver block until a message is available
· Non-blocking is considered asynchronous
· Non-blocking send has the sender send the message and continue
· Non-blocking receive has the receiver receive a valid message or null
Buffering
Queue of messages attached to the link; implemented in one of three ways
1.	Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)
2.	Bounded capacity – finite length of n messages
Sender must wait if link full
3.	Unbounded capacity – infinite length
Sender never waits
Examples of IPC Systems - POSIX
· POSIX Shared Memory
· Process first creates shared memory segment
· segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);
· Process wanting access to that shared memory must attach to it
· shared memory = (char *) shmat(id, NULL, 0);
· Now the process could write to the shared memory
· printf(shared memory, "Writing to shared memory");
· When done a process can detach the shared memory from its address space
· shmdt(shared memory);
Examples of IPC Systems - Mach

· Mach communication is message based
· Even system calls are messages
· Each task gets two mailboxes at creation- Kernel and Notify
· Only three system calls needed for message transfer
· msg_send(), msg_receive(), msg_rpc()
· Mailboxes needed for commuication, created via
· port_allocate()
Examples of IPC Systems – Windows XP
· Message-passing centric via local procedure call (LPC) facility
· Only works between processes on the same system
· Uses ports (like mailboxes) to establish and maintain communication channels
· Communication works as follows:
The client opens a handle to the subsystem’s connection port object
The client sends a connection request
The server creates two private communication ports and returns the handle to one of them to the client
The client and server use the corresponding port handle to send messages or callbacks and to listen for replies
[image: 3]Local Procedure Calls in Windows XP

Communications in Client-Server Systems
· Sockets
· Remote Procedure Calls
· Remote Method Invocation (Java)
Sockets
· A socket is defined as an endpoint for communication
·
· Concatenation of IP address and port
· The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
· Communication consists between a pair of sockets
Socket Communication

[image:]

Remote Procedure Calls
· Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
· Stubs – client-side proxy for the actual procedure on the server
· The client-side stub locates the server and marshalls the parameters
· The server-side stub receives this message, unpacks the marshalled parameters, and peforms the procedure on the server
Execution of RPC
[image:]

	

Remote Method Invocation
· Remote Method Invocation (RMI) is a Java mechanism similar to RPCs
· RMI allows a Java program on one machine to invoke a method on a remote object
[image:]
	

Marshalling Parameters

[image:]

	

Threads
· To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of multithreaded computer systems
· To discuss the APIs for the Pthreads, Win32, and Java thread libraries
· To examine issues related to multithreaded programming
[image:]Single and Multithreaded Processes

Benefits
· Responsiveness

· Resource Sharing

· Economy

· Scalability

Multicore Programming

Multicore systems putting pressure on programmers, challenges include
· Dividing activities
· Balance
· Data splitting
· Data dependency
· Testing and debugging
Multithreaded Server Architecture

[image: 4]	

Concurrent Execution on a Single-core System

[image: 4]	

Parallel Execution on a Multicore System

[image: 4]

User Threads
· Thread management done by user-level threads library
· nThree primary thread libraries:
· POSIX Pthreads
· l Win32 threads
· Java threads

Kernel Threads

Supported by the Kernel

Examples
· Windows XP/2000
· Solaris
· Linux
· Tru64 UNIX
· Mac OS X
Multithreading Models

· Many-to-One

· One-to-One
[image:]
· Many-to-Many
Many-to-One
Many user-level threads mapped to single kernel thread
Examples:
· Solaris Green Threads
· GNU Portable Threads

One-to-One
Each user-level thread maps to kernel thread
Examples
Windows NT/XP/2000
Linux
Solaris 9 and later

[image:]

Many-to-Many Model
· Allows many user level threads to be mapped to many kernel threads
· Allows the operating system to create a sufficient number of kernel threads
· Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package
[image:]

Two-level Model

Similar to M:M, except that it allows a user thread to be bound to kernel thread
[image:]Examples
· IRIX
· HP-UX
· Tru64 UNIX
· Solaris 8 and earlier

Thread Libraries
· Thread library provides programmer with API for creating and managing threads
· Two primary ways of implementing
· Library entirely in user space
· Kernel-level library supported by the OS
Pthreads

· May be provided either as user-level or kernel-level
· A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
· API specifies behavior of the thread library, implementation is up to development of the library
· Common in UNIX operating systems (Solaris, Linux, Mac OS X)
Java Threads

· Java threads are managed by the JVM

· Typically implemented using the threads model provided by underlying OS

· Java threads may be created by:
· lExtending Thread class
· Implementing the Runnable interface

Threading Issues

· Semantics of fork() and exec() system calls
· Thread cancellation of target thread
· Asynchronous or deferred
· Signal handling
· Thread pools
· Thread-specific data
· Scheduler activations
Thread Cancellation

· Terminating a thread before it has finished
· Two general approaches:
· Asynchronous cancellation terminates the target thread immediately
· Deferred cancellation allows the target thread to periodically check if it should be cancelled
Signal Handling

· Signals are used in UNIX systems to notify a process that a particular event has occurred
· A signal handler is used to process signals
· 1.Signal is generated by particular event
· 2.Signal is delivered to a process
· 3.Signal is handled
· Options:
· Deliver the signal to the thread to which the signal applies
· Deliver the signal to every thread in the process
· Deliver the signal to certain threads in the process
· Assign a specific threa to receive all signals for the process

Thread Pools
· Create a number of threads in a pool where they await work
· Advantages:
· Usually slightly faster to service a request with an existing thread than create a new thread
· Allows the number of threads in the application(s) to be bound to the size of the pool
Thread Specific Data
· Allows each thread to have its own copy of data
· Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Scheduler Activations
· Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application
· Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread library
· This communication allows an application to maintain the correct number kernel threads
[image: 4]Windows XP Threads

Implements the one-to-one mapping, kernel-level
· Each thread contains
· A thread id
· Register set
· Separate user and kernel stacks
· Private data storage area
· The register set, stacks, and private storage area are known as the context of the threads
· The primary data structures of a thread include:
· ETHREAD (executive thread block)
· KTHREAD (kernel thread block)
· TEB (thread environment block)

[image: in-4]Linux Threads

· Linux refers to them as tasks rather than threads

· Thread creation is done through clone() system call

· clone() allows a child task to share the address space of the parent task (process)

CPU Scheduling
· To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
· To describe various CPU-scheduling algorithms
· To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
· Maximum CPU utilization obtained with multiprogramming
· CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait
· CPU burst distribution
[image:]Histogram of CPU-burst Times

[image:]Alternating Sequence of CPU And I/O Bursts

CPU Scheduler
Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1.	Switches from running to waiting state
2.	Switches from running to ready state
3.	Switches from waiting to ready
4.	Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

Dispatcher
· Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
· switching context
· switching to user mode
· jumping to the proper location in the user program to restart that program
· Dispatch latency – time it takes for the dispatcher to stop one process and start another running
Scheduling Criteria
· CPU utilization – keep the CPU as busy as possible
· Throughput – # of processes that complete their execution per time unit
· Turnaround time – amount of time to execute a particular process
· Waiting time – amount of time a process has been waiting in the ready queue
· Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
· Max CPU utilization
· Max throughput
· Min turnaround time
· Min waiting time
· Min response time
First-Come, First-Served (FCFS) Scheduling

Process	Burst Time	
P1	24
 P2 	3
 P3	 3
Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

P1
P2
P3
24
27
30
0

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17
Suppose that the processes arrive in the order
		 P2 , P3 , P1
The Gantt chart for the schedule is:
n
n
n
nWaiting time for P1 = 6; P2 = 0; P3 = 3
nAverage waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

P1
P3
P2
6
3
30
0

	

Shortest-Job-First (SJF) Scheduling

· Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time
· SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing
 Process	Arrival Time	Burst Time
	

 P1	0.0	6
 P2 	2.0	8
 P3	4.0	7
 P4	5.0	3
SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7

the length of the next CPU request

P4
P3
P1
3
16
0
9
P2
24

Determining Length of Next CPU Burst
· Can only estimate the length
· Can be done by using the length of previous CPU bursts, using exponential averaging
[image:]Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

 =0
n+1 = n
Recent history does not count
 =1
 n+1 = tn
Only the actual last CPU burst counts
If we expand the formula, we get:
n+1 = tn+(1 -) tn -1 + …
 +(1 -)j tn -j + …
 +(1 -)n +1 0

Since both and (1 -) are less than or equal to 1, each successive term has less weight than its predecessor
Priority Scheduling

· A priority number (integer) is associated with each process
· The CPU is allocated to the process with the highest priority (smallest integer highest priority)
· Preemptive
· nonpreemptive
· SJF is a priority scheduling where priority is the predicted next CPU burst time
· Problem Starvation – low priority processes may never execute
· Solution Aging – as time progresses increase the priority of the process
Round Robin (RR)

· Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
· If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
· Performance
· q large FIFO
· q small q must be large with respect to context switch, otherwise overhead is too high
Example of RR with Time Quantum = 4
Process	Burst Time
P1	24
 P2	 3
 P3	3
	
The Gantt chart is:
P1
P2
P3
P1
P1
P1
P1
P1
0
4
7
10
14
18
22
26
30

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

[image:]

Turnaround Time Varies With The Time Quantum

[image:]

Multilevel Queue

· Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
· Each queue has its own scheduling algorithm
· foreground – RR
· background – FCFS
· Scheduling must be done between the queues
· Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
· Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
20% to background in FCFS
[bookmark: _GoBack]

[image:]Multilevel Queue Scheduling

Multilevel Feedback Queue

· A process can move between the various queues; aging can be implemented this way
· Multilevel-feedback-queue scheduler defined by the following parameters:
· number of queues
· scheduling algorithms for each queue
· method used to determine when to upgrade a process
· method used to determine when to demote a process
method used to determine which queue a process will enter when that process needs service
Example of Multilevel Feedback Queue

Three queues:
· Q0 – RR with time quantum 8 milliseconds
· Q1 – RR time quantum 16 milliseconds
· Q2 – FCFS
· Scheduling
· A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
· At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2.
Multilevel Feedback Queues

[image:]

Thread Scheduling

· Distinction between user-level and kernel-level threads
· Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
· Known as process-contention scope (PCS) since scheduling competition is within the process

· Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all threads in system

Pthread Scheduling

· API allows specifying either PCS or SCS during thread creation
· PTHREAD SCOPE PROCESS schedules threads using PCS scheduling
· PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{
	 int i;
	pthread t tid[NUM THREADS];
	pthread attr t attr;
	/* get the default attributes */
	pthread attr init(&attr);
	/* set the scheduling algorithm to PROCESS or SYSTEM */
	pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
	/* set the scheduling policy - FIFO, RT, or OTHER */
	pthread attr setschedpolicy(&attr, SCHED OTHER);
	/* create the threads */
	for (i = 0; i < NUM THREADS; i++)
		pthread create(&tid[i],&attr,runner,NULL);
/* now join on each thread */
	for (i = 0; i < NUM THREADS; i++)
		pthread join(tid[i], NULL);
}
 /* Each thread will begin control in this function */
void *runner(void *param)
{
	printf("I am a thread\n");
	pthread exit(0);
}

Multiple-Processor Scheduling

· CPU scheduling more complex when multiple CPUs are available
· Homogeneous processors within a multiprocessor
· Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing
· Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
· Processor affinity – process has affinity for processor on which it is currently running
· soft affinity
· hard affinity

NUMA and CPU Scheduling

[image: 5]

Multicore Processors

· Recent trend to place multiple processor cores on same physical chip
· Faster and consume less power
· Multiple threads per core also growing
· Takes advantage of memory stall to make progress on another thread while memory retrieve happens

[image: 5]Multithreaded Multicore System

Operating System Examples
· Solaris scheduling
· Windows XP scheduling
· Linux scheduling
[image:]Solaris Dispatch Table

[image: 5]Solaris Scheduling

[image:]Windows XP Priorities

Linux Scheduling

· Constant order O(1) scheduling time
· Two priority ranges: time-sharing and real-time
· Real-time range from 0 to 99 and nice value from 100 to 140

Priorities and Time-slice length
[image:]

[image:]List of Tasks Indexed According to Priorities

Algorithm Evaluation

· Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload
· Queueing models
· [image:]Implementation

Evaluation of CPU schedulers by Simulation

image5.png
ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head
tail N registers registers
0 0
. .
. .
head +——=
e
head —=
T PCB, PCB,, PCB;
- —
head
tail 5
PCB;
head 2
il |

image6.png
: ready queue ‘
/0 queue [«—— [/Orequest [«

time slice
expired

child fork a
e
interrupt wait for an
occurs interrupt

image7.png
swap in

partially executed swap out
swapped-out processes

ready queue

1/0 waiting
queues

end

image8.png
parent resumes

child

image9.png

image10.png
process A

process A

process B

shared

process B

N

i

kernel

image11.jpeg
Client

Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle

Communication Port

Shared
Section Object

(< = 256 bytes)

Server

image12.png
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

image13.png
client messages server

user calls kernel

to send RPC

message to

procedure X'

kernel sends Fmg\z?' matchmaker
message to Port: = receives
matchmaker to Re”‘:é%’:e";km message, looks
find port number| for RPC X up answer

From: server

kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port P

Port: P

From: client daemon

kernel sends To: server listening to

RPC Port: port P port P receives
<contents> message

daamorl

kernel receives processes

reply, passes To: client request and

it to user Port: kernel processes send
<output> output

image14.png
JVM

JVM

Java @
program

"emo,
€ Methoqy inv ocati
0

® remote
object

image15.png
client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)
{ implementation of someMethod
A
}
Yy T v
stub skeleton
A
A, B, someMethod

boolean return value

image16.png
thread —> ;

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
«—

— thread

single-threaded process

multithreaded process

image17.jpeg
(1) request

(2) create new
thread to service

the request

client

server

(3) resume listening
for additional
client requests

thread

image18.jpeg
single core

T4

T2

image19.jpeg
core 1

core 2

image20.png
s S

<«—— user thread

<«— kernel thread

image21.png

image22.png
34— user thread

<«— kernel thread

image23.png
g 3 <«— user thread

image24.jpeg
ETHREAD

thread start
address
pointer to
parent process KTHREAD
- scheduling
- and
synchronization
. information
: kernel
stack

Y

TEB

thread identifier

user
stack

thread-local
storage

kernel space

user space

image25.jpeg
flag meaning

CLONE_F§ File-system information is shared.
CLONE_VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

image26.png
frequency

160

140

120

100

80

60

40

20

1 1

16 24
burst duration (milliseconds)

32

40

image27.png
load store
add store
read from file

wait for I/O

CPU burst

1/0 burst

store increment

index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

j CPU burst

1/0 burst

¢ CPU burst

1/0 burst

image28.wmf
:

Define

4.

1

0

,

3.

burst

CPU

next

the

for

value

predicted

2.

burst

CPU

of

length

actual

1.

£

£

=

=

+

a

a

t

1

n

th

n

n

t

image29.png
123

T 10

4

CPU burst (f) 6 4 6 4 13 13

"guess" (t) 10 8 6 6 5 9 11

image30.png
process time = 10 quantum context

switches
12 0
10
6 1
6 10
1 9

image31.png
time
6
3
il
7

process
P,
P.
P.
P,

_ _ _ _ _
5.0.5.0.5.0.
- - o o o o
- - - =

awl punoJseuin) abelane

1
N
ai
-

125

time quantum

image32.png
highest priority

[—

system processes

—

interactive processes

interactive editing processes

batch processes

[m—

student processes

lowest priority

image33.png
quantum = 8 a:

quantum = 16 E:

FCFs a

image34.jpeg
fast access fast access
S

memory

computer

image35.jpeg
compute cycle

memory stall cycle

image36.png
time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

image37.jpeg
global

priority

highest

lowest

169

160
159

100
99

60
59

scheduling

interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads

interactive (IA) threads

order

first

last

image38.png
e R e
time-critical 31 15 15 15 15 15
highest 26 ill5 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 2 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

image39.png
numeric relative
priority priority
0 highest
99
100

140 lowest

real-time
tasks

other
tasks

time

quantum

200 ms

10 ms

image40.png
active expired

array array
priority task lists priority task lists
[0] @e—@ [0] o—0—>0

[1] oo [1] 0

[140] @ [140] 0—O0

image41.png
. i performance
simulation == statistics

for FCFS
FCFS

CPU 10

/10 213
actual CPU 12 4 . performance
process —(I/0 112 simulation =) statistics
execution @y 2 for SUF

110 147 |—I SIF L|

CPU 173

trace tape

performance

simulation = statistics

for RR (g = 14)

image1.png
max

stack

heap

data

text

image2.png
admitted interrupt

scheduler dispatch

1/0O or event completion 1/O or event wait

image3.png
process state

process number

program counter

registers

memory limits

list of open files

image4.png
process P,

operating system process P,

interrupt or system call

executing /—l

<

ridle

J

executing ¥

save state into PCB,

reload state from PCB,

 _

interrupt or system call

A 4 =

save state into PCB;

reload state from PCB,

idle

executing

idle

